4.8 Article

Chemical synthesis rewriting of a bacterial genome to achieve design flexibility and biological functionality

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1818259116

关键词

Caulobacter crescentus; chemical genome synthesis; genome rewriting; synonymous recoding; de novo DNA synthesis

资金

  1. US Department of Energy Joint Genome Institute, Swiss Federal Institute of Technology (ETH) Zurich ETH Research Grant [CSP-2840, ETH-08 16-1, CSP-1593]
  2. Swiss National Science Foundation [31003A 166476]
  3. Office of Science of the US Department of Energy [DE-AC02-05CH11231]
  4. Swiss National Science Foundation (SNF) [31003A_166476] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

Understanding how to program biological functions into artificial DNA sequences remains a key challenge in synthetic genomics. Here, we report the chemical synthesis and testing of Caulobacter ethensis-2.0 (C. eth-2.0), a rewritten bacterial genome composed of the most fundamental functions of a bacterial cell. We rebuilt the essential genome of Caulobacter crescentus through the process of chemical synthesis rewriting and studied the genetic information content at the level of its essential genes. Within the 785,701-bp genome, we used sequence rewriting to reduce the number of encoded genetic features from 6,290 to 799. Overall, we introduced 133,313 base substitutions, resulting in the rewriting of 123,562 codons. We tested the biological functionality of the genome design in C. crescentus by transposon mutagenesis. Our analysis revealed that 432 essential genes of C. eth-2.0, corresponding to 81.5% of the design, are equal in functionality to natural genes. These findings suggest that neither changing mRNA structure nor changing the codon context have significant influence on biological functionality of synthetic genomes. Discovery of 98 genes that lost their function identified essential genes with incorrect annotation, including a limited set of 27 genes where we uncovered noncoding control features embedded within protein-coding sequences. In sum, our results highlight the promise of chemical synthesis rewriting to decode fundamental genome functions and its utility toward the design of improved organisms for industrial purposes and health benefits.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据