4.7 Article

Transcriptome and hormone analyses provide insights into hormonal regulation in strawberry ripening

期刊

PLANTA
卷 250, 期 1, 页码 145-162

出版社

SPRINGER
DOI: 10.1007/s00425-019-03155-w

关键词

Fragaria; Fruit ripening; Hormone cross-talks; Plant hormone quantification; Transcriptome

资金

  1. National Natural Science Foundation of China [31672123, 31471860]
  2. Fundamental Research Funds for the Central Universities [KYZ201605]

向作者/读者索取更多资源

Main conclusionThe possible molecular mechanisms regulating strawberry fruit ripening were revealed by plant hormone quantification, exogenous hormone application, and RNA-sequencing.Fruit ripening involves a complex interplay among plant hormones. Strawberry is a model for studies on non-climacteric fruit ripening. However, the knowledge on how plant hormones are involved in strawberry ripening is still limited. To understand hormonal actions in the ripening process, we performed genome-wide transcriptome and hormonal analysis for the five major hormones (abscisic acid and catabolites, auxins, cytokinins, gibberellins, and ethylene) in achenes and receptacles (flesh) at different ripening stages of the woodland strawberry Fragaria vesca. Our results demonstrate that the pre-turning stage (a stage with white flesh and red achenes defined in this study) is the transition stage from immature to ripe fruits. The combinatorial analyses of hormone content, transcriptome data, and exogenous hormone treatment indicate that auxin is synthesized predominantly in achenes, while abscisic acid (ABA), bioactive free base cytokinins, gibberellins, and ethylene are mainly produced in receptacles. Furthermore, gibberellin may delay ripening, while ethylene and cytokinin are likely involved at later stages of the ripening process. Our results also provide additional evidence that ABA promotes ripening, while auxin delays it. Although our hormone analysis demonstrates that the total auxin in receptacles remains relatively low and unchanged during ripening, our experimental evidence further indicates that ABA likely enhances expression of the endoplasmic reticulum-localized auxin efflux carrier PIN-LIKES, which may subsequently reduce the auxin level in nucleus. This study provides a global picture for hormonal regulation of non-climacteric strawberry fruit ripening and also evidence for a possible mechanism of ABA and auxin interaction in the ripening process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据