4.8 Article

Violating Bell's inequality with remotely connected superconducting qubits

期刊

NATURE PHYSICS
卷 15, 期 8, 页码 741-+

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41567-019-0507-7

关键词

-

资金

  1. Army Research Office [W911NF-15-2-0058]
  2. Air Force Office of Scientific Research
  3. Department of Energy (DOE)
  4. NSF GRFP [NSF DGE-1144085]
  5. LDRD funds from Argonne National Laboratory
  6. DOE, Office of Basic Energy Sciences
  7. David and Lucile Packard Foundation
  8. UChicago MRSEC [NSF DMR-1420709]
  9. SHyNE, National Science Foundation's National Nanotechnology Coordinated Infrastructure [NSF NNCI-1542205]

向作者/读者索取更多资源

Quantum communication relies on the efficient generation of entanglement between remote quantum nodes, as entanglement is required to achieve and verify secure communications(1). Remote entanglement has been realized using a number of different probabilistic schemes(2,3), but deterministic remote entanglement has only been demonstrated recently, using a variety of superconducting circuit approaches(4-6). However, the deterministic violation of a Bell (i)nequality7, a strong measure of quantum correlation, has not been demonstrated so far in a superconducting quantum communication architecture, in part because achieving sufficiently strong correlation requires fast and accurate control of the emission and capture of the entangling photons. Here, we present a simple and robust architecture for achieving this benchmark result in a superconducting system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Multidisciplinary Sciences

Deterministic multi-qubit entanglement in a quantum network

Youpeng Zhong, Hung-Shen Chang, Audrey Bienfait, Etienne Dumur, Ming-Han Chou, Christopher R. Conner, Joel Grebel, Rhys G. Povey, Haoxiong Yan, David Schuster, Andrew N. Cleland

Summary: High-fidelity deterministic quantum state transfer and multi-qubit entanglement were demonstrated in a quantum network consisting of two superconducting quantum nodes connected by a one-meter-long superconducting coaxial cable. This work successfully achieved the deterministic generation and transmission of multi-qubit entanglement with high state fidelities, showing the potential for building large-scale quantum computers through modular linking of superconducting quantum processors.

NATURE (2021)

Article Physics, Multidisciplinary

Entanglement Purification and Protection in a Superconducting Quantum Network

Haoxiong Yan, Youpeng Zhong, Hung-Shen Chang, Audrey Bienfait, Ming-Han Chou, Christopher R. Conner, Etienne Dumur, Joel Grebel, Rhys G. Povey, Andrew N. Cleland

Summary: This research demonstrates the entanglement purification of Bell pairs shared between two remote superconducting quantum nodes through a purification process to correct amplitude damping errors, increasing fidelity. Additionally, dynamical decoupling and Rabi driving are used to protect entangled states from local noise, enhancing qubit dephasing time.

PHYSICAL REVIEW LETTERS (2022)

Article Multidisciplinary Sciences

Realizing topologically ordered states on a quantum processor

K. J. Satzinger, Y-J Liu, A. Smith, C. Knapp, M. Newman, C. Jones, Z. Chen, C. Quintana, X. Mi, A. Dunsworth, C. Gidney, I Aleiner, F. Arute, K. Arya, J. Atalaya, R. Babbush, J. C. Bardin, R. Barends, J. Basso, A. Bengtsson, A. Bilmes, M. Broughton, B. B. Buckley, D. A. Buell, B. Burkett, N. Bushnell, B. Chiaro, R. Collins, W. Courtney, S. Demura, A. R. Derk, D. Eppens, C. Erickson, L. Faoro, E. Farhi, A. G. Fowler, B. Foxen, M. Giustina, A. Greene, J. A. Gross, M. P. Harrigan, S. D. Harrington, J. Hilton, S. Hong, T. Huang, W. J. Huggins, L. B. Ioffe, S. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, T. Khattar, S. Kim, P. Klimov, A. N. Korotkov, F. Kostritsa, D. Landhuis, P. Laptev, A. Locharla, E. Lucero, O. Martin, J. R. McClean, M. McEwen, K. C. Miao, M. Mohseni, S. Montazeri, W. Mruczkiewicz, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, T. E. O'Brien, A. Opremcak, B. Pato, A. Petukhov, N. C. Rubin, D. Sank, V Shvarts, D. Strain, M. Szalay, B. Villalonga, T. C. White, Z. Yao, P. Yeh, J. Yoo, A. Zalcman, H. Neven, S. Boixo, A. Megrant, Y. Chen, J. Kelly, V Smelyanskiy, A. Kitaev, M. Knap, F. Pollmann, P. Roushan

Summary: The discovery of topological order revolutionized the understanding of quantum matter and laid the theoretical groundwork for quantum error-correcting codes. By preparing the ground state of the toric code Hamiltonian on a superconducting quantum processor, researchers were able to measure topological entanglement entropy and simulate anyon interferometry. Investigating aspects of the surface code, including logical state injection and the decay of nonlocal order parameter, showed the potential of quantum processors in studying topological quantum matter and error correction mechanisms.

SCIENCE (2021)

Article Quantum Science & Technology

Quantum communication with itinerant surface acoustic wave phonons

E. Dumur, K. J. Satzinger, G. A. Peairs, M-H Chou, A. Bienfait, H-S Chang, C. R. Conner, J. Grebel, R. G. Povey, Y. P. Zhong, A. N. Cleland

Summary: This research explores the use of surface acoustic waves in quantum communication, demonstrating a single-phonon surface acoustic wave transmission line that links two quantum qubit nodes. It enables the coherent transfer of quantum information and the generation of a two-node Bell state.

NPJ QUANTUM INFORMATION (2021)

Article Nanoscience & Nanotechnology

Strong coupling between a photon and a hole spin in silicon

Cecile X. Yu, Simon Zihlmann, Jose C. Abadillo-Uriel, Vincent P. Michal, Nils Rambal, Heimanu Niebojewski, Thomas Bedecarrats, Maud Vinet, Etienne Dumur, Michele Filippone, Benoit Bertrand, Silvano De Franceschi, Yann-Michel Niquet, Romain Maurand

Summary: Strong intrinsic spin-orbit interaction in silicon enables strong spin-photon coupling with a frequency of 300 MHz, which is promising for scalable quantum information processing. Coupling semiconductor quantum dots to superconducting microwave resonators allows for fast non-demolition readout and on-chip connectivity. By leveraging the strong spin-orbit interaction in silicon, a spin-photon coupling rate of 330 MHz is achieved, surpassing the spin-photon decoherence rate and paving the way for circuit quantum electrodynamics with spins in semiconductor quantum dots.

NATURE NANOTECHNOLOGY (2023)

Article Multidisciplinary Sciences

Splitting phonons: Building a platform for linear mechanical quantum computing

H. Qiao, E. Dumur, G. Andersson, H. Yan, M. -H. Chou, J. Grebel, C. R. Conner, Y. J. Joshi, J. M. Miller, R. G. Povey, X. Wu, A. N. Cleland

Summary: Linear optical quantum computing is an ideal approach to quantum computing, requiring only a small number of computational elements. The similarity between photons and phonons suggests the potential for using phonons instead of photons in linear mechanical quantum computing. In this study, we demonstrate a beam splitter element with single phonons by using two superconducting qubits for full characterization. We also show two-phonon interference using the beam splitter, a requirement for two-qubit gates in linear computing. This advances a new solid-state system for implementing linear quantum computing and provides a straightforward conversion between itinerant phonons and superconducting qubits.

SCIENCE (2023)

Article Physics, Applied

Broadband bandpass Purcell filter for circuit quantum electrodynamics

Haoxiong Yan, Xuntao Wu, Andrew Lingenfelter, Yash J. Joshi, Gustav Andersson, Christopher R. Conner, Ming-Han Chou, Joel Grebel, Jacob M. Miller, Rhys G. Povey, Hong Qiao, Aashish A. Clerk, Andrew N. Cleland

Summary: In this Letter, we present and implement a multi-stage bandpass Purcell filter that enhances qubit protection, increases measurement bandwidth, and improves multiplexed capacity. Our experimental results demonstrate the flexibility of the transmission-line-based implementation, which can be integrated with current scaled-up, long coherence time superconducting quantum processors.

APPLIED PHYSICS LETTERS (2023)

Article Multidisciplinary Sciences

Cloaking a qubit in a cavity

Cristobal Lledo, Remy Dassonneville, Adrien Moulinas, Joachim Cohen, Ross Shillito, Audrey Bienfait, Benjamin Huard, Alexandre Blais

Summary: Cavity quantum electrodynamics (QED) uses a cavity to enhance the interaction between light and matter, and has become an important tool for studying quantum optics and quantum computation. The authors demonstrate that by using a tailored external tone to destructively interfere with the cavity field, a transmon qubit can be protected from undesired effects.

NATURE COMMUNICATIONS (2023)

暂无数据