4.8 Article

Speech synthesis from neural decoding of spoken sentences

期刊

NATURE
卷 568, 期 7753, 页码 493-+

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41586-019-1119-1

关键词

-

资金

  1. NIH [DP2 OD008627, U01 NS098971-01]
  2. William K. Bowes Foundation
  3. Howard Hughes Medical Institute
  4. New York Stem Cell Foundation
  5. Shurl and Kay Curci Foundation

向作者/读者索取更多资源

Technology that translates neural activity into speech would be transformative for people who are unable to communicate as a result of neurological impairments. Decoding speech from neural activity is challenging because speaking requires very precise and rapid multi-dimensional control of vocal tract articulators. Here we designed a neural decoder that explicitly leverages kinematic and sound representations encoded in human cortical activity to synthesize audible speech. Recurrent neural networks first decoded directly recorded cortical activity into representations of articulatory movement, and then transformed these representations into speech acoustics. In closed vocabulary tests, listeners could readily identify and transcribe speech synthesized from cortical activity. Intermediate articulatory dynamics enhanced performance even with limited data. Decoded articulatory representations were highly conserved across speakers, enabling a component of the decoder to be transferrable across participants. Furthermore, the decoder could synthesize speech when a participant silently mimed sentences. These findings advance the clinical viability of using speech neuroprosthetic technology to restore spoken communication.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据