4.6 Article

Investigating the transformation of CsPbBr3 nanocrystals into highly stable CsPbBr3/Cs4PbBr6 nanocrystals using ethyl acetate in a microchannel reactor

期刊

NANOTECHNOLOGY
卷 30, 期 29, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1361-6528/ab15c7

关键词

perovskite nanocrystals; transformation; microchannel; LED

资金

  1. National Natural Science Foundation of China [51775199, 51735004]
  2. Natural Science Foundation of Guangdong Province [2018B030306008, 2014A030312017]
  3. Special Funds for the Cultivation of Guangdong College Students' Scientific and Technological Innovation ('Climbing Program' Special Funds.) [pdjh2018a0026]

向作者/读者索取更多资源

The nanocrystals (NCs) of inorganic perovskites CsPbX3 and Cs4PbX6 (X = Cl, Br, I) are showing a great development potential due to their versatility of crystal structure. Here, we used a microchannel reactor to synthesize both CsPbBr3 NCs (CsPbBr3 NCs) and Cs4PbBr6 NCs with embedded CsPbBr3 (CsPbBr3/Cs4PbBr6 NCs). Via speed control of the precursor, ligands around the surface of NCs were effectively regulated by ethyl acetate, allowing the transformation from CsPbBr3 NCs to CsPbBr3/Cs4PbBr6 NCs in a short time, an outstanding stability of NCs, and a better crosslinking between NCs and polymer for the application of LEDs. Without any protection, the CsPbBr3/Cs4PbBr6 NCs, with a production rate of 28 mg min(-1), retain more than 90% of the PL intensity after 84 d. Finally, the CsPbBr3/Cs4PbBr6 NCs were used to produce an LED device, and a wide color gamut of 122.8% NTSC or 91.7% Rec 2020 was attained.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据