4.7 Article

Development of Simplified in Vitro P-Glycoprotein Substrate Assay and in Silico Prediction Models To Evaluate Transport Potential of P-Glycoprotein

期刊

MOLECULAR PHARMACEUTICS
卷 16, 期 5, 页码 1851-1863

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.molpharmaceut.8b01143

关键词

P-glycoprotein; substrate; nonsubstrate; in vitro screening; in silico prediction; physicochemical parameters; correlation; machine learning

向作者/读者索取更多资源

For efficient drug discovery and screening, it is necessary to simplify P-glycoprotein (P-gp) substrate assays and to provide in silico models that predict the transport potential of P-gp. In this study, we developed a simplified in vitro screening method to evaluate P-gp substrates by unidirectional membrane transport in P-gp-overexpressing cells. The unidirectional flux ratio positively correlated with parameters of the conventional bidirectional P-gp substrate assay (R-2 = 0.941) and in vivo K-p,K-brain ratio (mdr1a/1b KO/WT) in mice (R-2 = 0.800). Our in vitro P-gp substrate assay had high reproducibility and required approximately half the labor of the conventional method. We also constructed regression models to predict the value of P-gp-mediated flux and three-class classification models to predict P-gp substrate potential (low-, medium-, and high-potential) using 2397 data entries with the largest data set collected under the same experimental conditions. Most compounds in the test set fell within two- and three-fold errors in the random forest regression model (71.3 and 88.5%, respectively). Furthermore, the random forest three-class classification model showed a high balanced accuracy of 0.821 and precision of 0.761 for the lowpotential classes in the test set. We concluded that the simplified in vitro P-gp substrate assay was suitable for compound screening in the early stages of drug discovery and that the in silico regression model and three-class classification model using only chemical structure information could identify the transport potential of compounds including P-gp-mediated flux ratios. Our proposed method is expected to be a practical tool to optimize effective central nervous system (CNS) drugs, to avoid CNS side effects, and to improve intestinal absorption.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据