4.5 Article

The Toll-Like Receptor/MyD88/XBP1 Signaling Axis Mediates Skeletal Muscle Wasting during Cancer Cachexia

期刊

MOLECULAR AND CELLULAR BIOLOGY
卷 39, 期 15, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.00184-19

关键词

atrophy; cancer cachexia; MyD88; skeletal muscle; XBP1; Toll-like receptors; unfolded protein response

资金

  1. National Institutes of Health [AR059810, AR068313, AG029623]

向作者/读者索取更多资源

Skeletal muscle wasting causes both morbidity and mortality of cancer patients. Accumulating evidence suggests that the markers of endoplasmic reticulum (ER) stress and unfolded protein response (UPR) pathways are increased in skeletal muscle under multiple catabolic conditions, including cancer. However, the signaling mechanisms and the role of individual arms of the UPR in the regulation of skeletal muscle mass remain largely unknown. In the present study, we demonstrated that gene expression of Toll-like receptors (TLRs) and myeloid differentiation primary response gene 88 (MyD88) was increased in skeletal muscle in a Lewis lung carcinoma (LLC) model of cancer cachexia. Targeted ablation of MyD88 inhibits the loss of skeletal muscle mass and strength in LLC tumor-bearing mice. Inhibition of MyD88 attenuates the LLC-induced activation of the UPR in skeletal muscle of mice. Moreover, muscle-specific deletion of X-box binding protein 1 (XBP1), a major downstream target of IRE1 alpha arm of the UPR, ameliorates muscle wasting in LLC tumor-bearing mice. Our results also demonstrate that overexpression of an active form of XBP1 caused atrophy in cultured myotubes. In contrast, knockdown of XBP1 inhibits myotube atrophy in response to LLC or C26 adenocarcinoma cell conditioned medium. Collectively, our results demonstrate that TLR/MyD88-mediated activation of XBP1 causes skeletal muscle wasting in LLC tumor-bearing mice.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据