4.2 Article

Synthesis of Tetrahydrobenzo[b]pyran and Pyrano[2, 3-d]pyrimidinone Derivatives Using Fe3O4@Ph-PMO-NaHSO4 as a New Magnetically Separable Nanocatalyst

期刊

JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY
卷 19, 期 6, 页码 3447-3458

出版社

AMER SCIENTIFIC PUBLISHERS
DOI: 10.1166/jnn.2019.16032

关键词

PMO; Nanocatalyst; Tetrahydrobenzo[b]pyran; Pyrano[2,3-d]pyrimidinone; Fe3O4@Ph-PMO-NaHSO4

资金

  1. Research Council of the University of Guilan

向作者/读者索取更多资源

Immobilized NaHSO4 on core/shell phenylene bridged periodic mesoporous organosilica magnetic nanoparticles (Fe3O4@Ph-PMO-NaHSO4) as a new acidic magnetically separable nanocatalyst was successfully prepared in three steps: (i) preparation of Fe3O4 nanoparticles by a precipitation method, (ii) synthesis of an organic-inorganic periodic mesoporous organosilica structure with phenyl groups on the surface of Fe3O4 magnetic nanoparticles (MNPs) and (iii) finally adsorption of NaHSO4 on periodic mesoporous organosilica (PMO) network. The prepared organic-inorganic magnetic reagent was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), N-2 adsorption-desorption and energy-dispersive X-ray (EDX) techniques. Finally, it was used as a reusable and new catalyst to promote the synthesis of tetrahydrobenzo[b]pyran and pyrano[2,3-d]pyrimidinone derivatives as important biologically active compounds. Eco-friendly protocol, high yields, short reaction times and easy and quick isolation of the products are the main advantages of this procedure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据