4.2 Article

ANISOTROPIC MULTIMATERIAL LATTICES AS THERMAL ADAPTERS

期刊

出版社

MATHEMATICAL SCIENCE PUBL
DOI: 10.2140/jomms.2019.14.155

关键词

thermal mismatch adapters; composite cylindrical and conical lattices; multimaterial triangular cells; satellite connectors

向作者/读者索取更多资源

Design concepts for anisotropic adaptive lattices compounded of triangular multimaterial cells are considered. The lattices connect two parts of a structure (referred here as the substrates) made of materials with different coefficients of thermal expansion (CTEs) and subject to large variation of temperature. They are designed to eliminate mismatched thermal expansion and provide constant independent of temperature distance between the substrates. Because all connections with the substrates and within the lattice are made with pins, the whole structure is free of bending and thermal expansion mismatch stresses. The designed lattices are scale independent. Relationships between cell geometry (triangle angles and height) and the CTEs of selected lattice materials are obtained. Two-cell and three-cell one-row and five-cell two-row planar lattices are designed. Furthermore, axisymmetric adaptive lattice assembly is considered. Such a lattice can have cylindrical or conical shape and may be compounded of several rows. Cell members in all designed lattices are made of conventional materials. Lattice materials providing the largest structural efficiency are recommended.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据