4.5 Article

A duality web in 2+1 dimensions and condensed matter physics

期刊

ANNALS OF PHYSICS
卷 374, 期 -, 页码 395-433

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.aop.2016.08.007

关键词

Field theory duality; Quantum hall effect; Topological insulator; Composite fermions; Quantum criticality

资金

  1. DOE [DE-SC0009988]
  2. NSF [DMR-1305741, PHY-1314311]
  3. Simons Foundation
  4. Harvard Society of Fellows

向作者/读者索取更多资源

Building on earlier work in the high energy and condensed matter communities, we present a web of dualities in 2 I 1 dimensions that generalize the known particle/vortex duality. Some of the dualities relate theories of fermions to theories of bosons. Others relate different theories of fermions. For example, the long distance behavior of the 2+1-dimensional analog of QED with a single Diracfermion (a theory known as U(1)(1/2)) is identified with the O(2) Wilson-Fisher fixed point. The gauged version of that fixed point with a Chern-Simons coupling at level one is identified as a free Dirac fermion. The latter theory also has a dual version as a fermion interacting with some gauge fields. Assuming some of these dualities, other dualities can be derived. Our analysis resolves a number of confusing issues in the literature including how time reversal is realized in these theories. It also has many applications in condensed matter physics like the theory of topological insulators (and their gapped boundary states) and the problem of electrons in the lowest Landau level at half filling. (Our techniques also clarify some points in the fractional Hall effect and its description using flux attachment.) In addition to presenting several consistency checks, we also present plausible (but not rigorous) derivations of the dualities and relate them to 3 + 1-dimensional S-duality. (C) 2016 Published by Elsevier Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Physics, Multidisciplinary

Construction of thin-shell around new wormhole solutions via solitonic quantum wave dark matter

G. Mustafa, S. K. Maurya, Saibal Ray, Faisal Javed

Summary: In this study, we investigate the geometry of wormholes in the framework of general relativity and explore how quantum wave dark matter affects the dynamical configuration of the shell surrounding the wormhole. By using specific shape functions and introducing quantum wave dark matter, we obtain reasonable wormhole solutions and observe its effects on the stability of the shell.

ANNALS OF PHYSICS (2024)

Article Physics, Multidisciplinary

Specific heat of a driven lattice gas

Pritha Dolai, Christian Maes

Summary: Calorimetry for equilibrium systems aims to determine the energy levels' occupation and distribution by measuring thermal response, while nonequilibrium versions provide additional information on the dynamical accessibility of these states. Using calculations on a driven exclusion process, it is confirmed that a fermionic nonequilibrium steady state with exact computation of specific heat can be achieved. The divergence at zero temperature occurs when the Fermi energy and the kinetic barrier for loading and emptying are approximately equal. Additionally, a stable low temperature regime of negative specific heat appears when the kinetic barrier is density-dependent, indicating an anti-correlation between the stationary occupation's temperature-dependence and excess heat.

ANNALS OF PHYSICS (2024)

Article Physics, Multidisciplinary

Some remarks on Hayward black hole surrounded by a cloud of strings

F. F. Nascimento, V. B. Bezerra, J. M. Toledo

Summary: We obtained the metric of the Hayward black hole surrounded by a cloud of strings, and analyzed the effects of the string cloud on the regularity of the solution and the energy conditions. Various aspects such as horizons, geodesics, effective potential, and thermodynamics were investigated. We compared the obtained results with the literature corresponding to the Hayward black hole without a string cloud.

ANNALS OF PHYSICS (2024)