4.6 Article

Stable G-quadruplex enabling sequences are selected against by the context-dependent codon bias

期刊

GENE
卷 696, 期 -, 页码 149-161

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.gene.2019.02.006

关键词

G quadruples; Codon bias; Translation; Coding region; mRNA; Structured RNA

资金

  1. NIH [GM116110]
  2. Graduate Student Senate (GSS) award from Kent State University
  3. NIH NIGMS [GM86782-01A1]

向作者/读者索取更多资源

The distributions of secondary structural elements appear to differ between coding regions (CDS) of mRNAs compared to the untranslated regions (UTRs), presumably as a mechanism to fine-tune gene expression, including efficiency of translation. However, a systematic and comprehensive analysis of secondary structure avoidance because of potential bias in codon usage is difficult as some of the common secondary structures, such as, hairpins can be formed by numerous sequence combinations. Using G-quadruplex (GQ) as the model secondary structure we studied the impact of codon bias on GQs within the CDS. Because GQs can be predicted using specific consensus sequence motifs, they provide an excellent platform for investigation of the selectivity of such putative structures at the codon level. Using a bioinformatics approach, we calculated the frequencies of putative GQs within the CDS of a variety of species. Our results suggest that the most stable GQs appear to be significantly underrepresented within the CDS, through the use of specific synonymous codon combinations. Furthermore, we identified many peptide sequence motifs in which silent mutations can potentially alter translation via stable GQ formation. This work not only provides a comprehensive analysis on how stable secondary structures appear to be avoided within the CDS of mRNA, but also broadens the current understanding of synonymous codon usage as they relate to the structure-function relationship of RNA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据