4.5 Article

CFD aided approach to design printed circuit heat exchangers for supercritical CO2 Brayton cycle application

期刊

ANNALS OF NUCLEAR ENERGY
卷 92, 期 -, 页码 175-185

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.anucene.2016.01.019

关键词

Supercritical CO2; S-CO2 Brayton cycle; Printed circuit heat exchanger; S-CO2 PCHE; CFD; Supercritical fluids

资金

  1. National Research Foundation of Korea [NRF-2013M2A8A1041508]
  2. Korean Ministry of Science, ICT and Future Planning
  3. National Research Foundation of Korea [2013M2A8A1041508] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

While most conventional PCHE designs for working fluid of supercritical CO2 require an extension of valid Reynolds number limits of experimentally obtained correlations, Computational Fluid Dynamics (CFD) code ANSYS CFX was used to explore validity of existing correlations beyond their tested Reynolds number ranges. For heat transfer coefficient correlations, an appropriate piece-wising with Ishizuka's and Hesselgreaves's correlation is found to enable an extension of Reynolds numbers. For friction factors, no single existing correlation is found to capture different temperature and angular dependencies for a wide Reynolds number range. Based on the comparison of CFD results with the experimentally obtained correlations, a new CFD-aided correlation covering an extended range of Reynolds number 2000-58,000 for Nusselt number and friction factor is proposed to facilitate PCHE designs for the supercritical CO2 Brayton cycle application. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据