4.7 Article

Vitamin A deficiency impairs intestinal physical barrier function of fish

期刊

FISH & SHELLFISH IMMUNOLOGY
卷 87, 期 -, 页码 546-558

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.fsi.2019.01.056

关键词

Vitamin A; Intestinal segment; Physical barrier; Apoptosis protein; Antioxidant capacity

资金

  1. National Natural Science Foundation of China [31672662]
  2. National Basic Research Program of China (973 Program) [2014CB138600]
  3. National Department Public Benefit Research Foundation (Agriculture) of China [201003020]
  4. National Technology System for Conventional Freshwater Fish Industries [CARS-45]
  5. Outstanding Talents and Innovative Team of Agricultural Scientific Research (Ministry of Agriculture), Science and Technology Support Program of Sichuan Province of China [2014NZ0003]
  6. Major Scientific and Technological Achievement Transformation Project of Sichuan Province of China [2012NC0007, 2013NC0045]
  7. Demonstration of Major Scientific and Technological Achievement Transformation Project of Sichuan Province of China [2015CC0011]
  8. Natural Science Foundation for Young Scientists of Sichuan Province [2014JQ0007]
  9. 111 Project [D17015]
  10. Foundation of Sichuan Youth Science and Technology Innovation Research Team [2017TD0002]
  11. Modern Agricultural Industry Technology system of Sichuan Freshwater Fish Innovation Team

向作者/读者索取更多资源

The present study was the first to investigate the effects of dietary vitamin A (VA) on the intestinal physical barrier function associated with oxidation, antioxidant system, apoptosis and cell-cellular tight junction (TJ) in the proximal (PI), mid (MI) and distal (DI) intestines of young grass carp (Ctenopharyngodon idella). Fish were fed graded levels of dietary VA for 10 weeks, and then a challenge test using an injection of Aeromonas hydrophila was conducted for 14 days. Results indicated that dietary VA deficiency caused oxidative damage to fish intestine partly by the reduced non-enzymatic antioxidant components glutathione (GSH) and VA contents as well as reduced antioxidant enzyme activities [not including manganese superoxide dismutase (MnSOD)]. Further results observed that the decreased antioxidant enzyme activities by VA deficiency were partly related to the down-regulation of their corresponding mRNA levels which were regulated by the down-regulation of NF-E2-related factor 2 (Nrf2) mRNA levels and up-regulation of ketch-like-ECH-associated protein (Keap1a) (rather than Keap1b) mRNA levels in three intestinal segments of fish. Meanwhile, VA deficiency up-regulated the mRNA levels of the apoptosis signalling [caspase-3, caspase-8, caspase-9 (rather than caspase-7)] associated with the inhibition of the target of rapamycin (TOR) signalling pathway in three intestinal segments of fish. Additionally, VA deficiency decreased the mRNA levels of TJ complexes [claudin-b, claudin-c, claudin-3, claudin-12, claudin-15a, occludin and zonula occludens-1 (ZO-1) in the PI, MI and DI, as well as claudin-7 and claudin-11a in the MI and DI] linked to the up-regulation of myosin light chain kinase (NECK) signalling. These results suggested that VA deficiency impaired structural integrity in three intestinal segments of fish. Meanwhile, excessive VA also showed similar negative effects on these indexes. Taken together, the current study firstly demonstrated that VA deficiency impaired physical barrier functions associated with impaired antioxidant capacity, aggravated cell apoptosis and disrupted TJ complexes in the PI, MI and DI, but different segments performed different actions in fish. Based on protecting fish against protein oxidation, the optimal VA levels for grass carp were estimated to be 2622 IU/kg diet.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据