4.8 Article

Combined Partial Denitrification (PD)-Anammox: A method for high nitrate wastewater treatment

期刊

ENVIRONMENT INTERNATIONAL
卷 126, 期 -, 页码 707-716

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.envint.2019.03.007

关键词

High-strength nitrate; Partial-denitrification (PD); Anammox; Municipal sewage; Soluble microbial products

资金

  1. Funding Projects of Beijing Municipal Science and Technology Commission [D171100001017002]
  2. National Postdoctoral Program for Innovative Talents [BX20180019]
  3. China Postdoctoral Science Foundation [2018M641139]

向作者/读者索取更多资源

Elimination of nitrogen pollution from wastewater containing high-strength nitrate (NO3--N) is a significant issue to prevent deterioration of water quality and eutrophication of receiving water body. Traditional denitrification process faces several challenges including the huge organic carbon demand, intermediate products accumulation, and long acclimatization period. In this study, an efficient solution was given by a novel two-stage Partial Denitrification (PD)-Anammox process. High NO3--N (1000 mg N/L) wastewater and municipal sewage (COD: 182.5 mg/L, ammonia (NH4+-N): 58.3 mg/L) were simultaneously introduced to the PD reactor for NO3--N converting to NO2--N. The NH4+-N and NO2--N in effluent of PD were removed in subsequent anammox reactor. Results showed that a satisfactory nitrogen removal was achieved by optimizing the volume ratios of influent NO3--N and municipal sewage, as well as the external organic matter dosage. The NO3--N removal efficiency reached up to 95.8% without accommodation period, along with the NH4+-N removal achieving 92.8%. Anammox contributed to 78.9% of TN removal despite the high COD (76.5-98.6 mg/L) in PD effluent was introduced, indicating the significant stability of the integrated process. The microbial analysis suggested that the Candidatus Brocadia, identified as anammox bacteria, cooperated stable with denitrifying bacteria in 215-day operation. The PD-Anammox process offers an economically and technically attractive approach in the high NO3--N wastewater treatment since it has great advantages of much low carbon demand, minimal sludge production, enabling simultaneous treatment of municipal sewage, and avoiding the common issues in traditional denitrification process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据