4.7 Article

Biodegradation patterns of the endocrine disrupting pollutant di(2-ethylhexyl) phthalate by Fusarium culmorum

期刊

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
卷 170, 期 -, 页码 293-299

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2018.11.140

关键词

Biodegradation; Di (2-ethylhexyl) phthalate; Esterase activity; Fusarium culmorum

资金

  1. National Council of Science and Technology, Mexico (CONACyT) [1549]
  2. CONACyT [555469]

向作者/读者索取更多资源

Di(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer, which is considered an endocrine disrupting pollutant. Growth kinetics and esterases activity by biochemical tests and polyacrylamide gel electrophoresis were characterized for Fusarium culmorum grown in DEHP-supplemented (1000 mg/L) medium as the only carbon source and in control medium with glucose. Intermediate compounds of biodegraded DEHP were identified by GC-MS. F. culmorum degraded 92% of DEHP within 36 h. DEHP was degraded to butanol, hexanal, catechol and acetic acid. It is suggested that the first two compounds would transform into butanediol and the last two would enter into the Krebs cycle and would be mineralized to CO2 and H2O. DEHP induced eight esterase isoforms, which were different to those constitutive isoforms produced in the control medium. It is suggested that five enzymes (25.7, 29.5, 31.8, 97.6 and 144.5 kDa) detected during the first 36 h be involved in the primary biodegradation of DEHP. The rest of the enzymes (45.9, 66.6 and 202.9 kDa) might be involved in the final steps for DEHP metabolism. F. culmorum has a promising practical application in the treatment of DEHP-contaminated environments because it can secrete specific esterase to breakdown high concentrations of DEHP in a short period of time. This research represents the first approach for the study of esterase involved in the DEHP degradation by fungi using this phthalate as the sole source of carbon and energy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据