4.7 Review

Monitoring volcano slope instability with Synthetic Aperture Radar: A review and new data from Pacaya (Guatemala) and Stromboli (Italy) volcanoes

期刊

EARTH-SCIENCE REVIEWS
卷 192, 期 -, 页码 236-257

出版社

ELSEVIER
DOI: 10.1016/j.earscirev.2019.03.009

关键词

Interferometry; Ground-based InSAR; Debris avalanche; Deformation; Collapse triggers; Spreading; Pacaya; Stromboli

资金

  1. Presidenza del Consiglio dei Ministri - Dipartimento della Protezione Civile (Presidency of the Council of Ministers - Department of Civil Protection)
  2. Volcano Sentinel - extension project (Call: Settore ricerca scientifica e innovazione tecnologica - Ente Cassa di Risparmio di Firenze)

向作者/读者索取更多资源

Volcano slope instability manifests in many forms, ranging from steady state to punctuated movement, or shallow erosion to deep-seated spreading. The interplay of gravity, magmatic or hydrothermal fluids, and often active tectonics on a volcanic edifice results in complex spatial and temporal variations in deformation kinematics. While this makes the recognition, assessment, and monitoring of volcano slope instability challenging, advancements in Synthetic Aperture Radar (SAR) technology have significantly accelerated our knowledge of instability phenomena and our ability to assess their hazards. This review discusses the applications and challenges of SAR imagery to various slope instabilities at volcanoes around the world. SAR amplitude images are powerful tools for mapping areas of geomorphological changes. These snapshots can be combined using Interferometric SAR (InSAR) to create multi-temporal deformation maps that provide unique information on the evolution of slope failures. Space-borne InSAR has become an economic way to detect changes at volcanoes at very high resolution. Ground-Based InSAR (GBInSAR) can produce frequent SAR images (on the order of seconds to minutes), propelling InSAR from monitoring to surveillance and early-warning applications. However, interpreting InSAR-derived ground deformation signals related to volcano slope instability is still challenging. Deformation from magma rise or variations in hydrothermal systems may be inseparable from persistent, deep-seated flank motion. Similarly, shallow or localized ground motion may occur in overlap with thermal contraction or subsidence of newly emplaced lava or tephra deposits. If triggered to failure, landslides can vary over several magnitudes, from small-volume rock falls that pose only a localized hazard, to large-volume debris avalanches capable of travelling tens of kilometers away from the source. These collapses can have cascading hazards if accompanied by directed blasts or tsunamis, emphasizing the need for continued advancement of our understanding of these events and their consequences. To highlight the utility of SAR for measuring and monitoring mass movement, two case studies of Stromboli (Italy) and Pacaya (Guatemala) volcanoes are discussed in detail, where recent instability events, persistent volcanic activity, and ground truth constraints have resulted in excellent case-histories in applying SAR imagery to understand these potentially hazardous slope instabilities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据