4.7 Article

Dynamic instability of Euler-Bernoulli nanobeams subject to parametric excitation

期刊

COMPOSITES PART B-ENGINEERING
卷 164, 期 -, 页码 226-234

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesb.2018.11.088

关键词

Euler-Bernoulli nanobeam; Dynamic stability; Nonlocal continuum mechanics; Bolotin's theory; Size effect

资金

  1. National Natural Science Foundation of China [51208126, 51578169]
  2. Technology Planning Project of Guangdong Province in China [2016B050501004]
  3. Guangzhou Science Technology and Innovation Commission
  4. Chinese Government Scholarship from China Scholarship Council

向作者/读者索取更多资源

Little research on the dynamic instability of nanobeams caused by parametric resonance has been reported in the literature. This paper presents an accurate and analytical method for investigating the dynamic instability of nanobeams based on the nonlocal continuum mechanics. The governing equation of transverse vibration of nanobeams subject to axial dynamic load is derived using the Hamilton's principle and the nonlocal theory to establish the Mathieu-Hill equation of dynamic stability, based on which the equations of critical excitation frequencies are derived by the Bolotin's theory to determine the regions of dynamic instability. Especially, the matrix singularity problem encountered in solving the equations of critical frequencies is overcome by matrix transformation. For verifying the accuracy of obtained regions of dynamic stability, the dynamic responses of nanobeams are computed by the fourth-order Runge-Kutta approach. By comprehensively exploring the size dependence of dynamic stability of nanobeams, it is found that the size scale parameter influences the regions of dynamic instability mainly through the nonlocal natural frequency and the nonlocal Euler buckling load. As the size scale parameter increases, the nonlocal natural frequency and the nonlocal buckling load decrease, which leads to the reduction of the value and bandwidth of critical excitation frequencies. Moreover, the size effects are found to decrease with an increase of length of nanobeam.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据