4.6 Article

Absence of positive selection on CenH3 in Luzula suggests that holokinetic chromosomes may suppress centromere drive

期刊

ANNALS OF BOTANY
卷 118, 期 7, 页码 1347-1352

出版社

OXFORD UNIV PRESS
DOI: 10.1093/aob/mcw186

关键词

CenH3; centromere drive; holokinetic chromosomes; positive selection; Luzula

资金

  1. MetaCentrum [LM2010005]
  2. CERIT-SC (the program Centre CERIT Scientific Cloud, part of the Operational Program Research and Development for Innovations) [CZ.1.05/3.2.00/08.0144]
  3. Czech Science Foundation [13-29362S]

向作者/读者索取更多资源

Background and Aims The centromere drive theory explains diversity of eukaryotic centromeres as a consequence of the recurrent conflict between centromeric repeats and centromeric histone H3 (CenH3), in which selfish centromeres exploit meiotic asymmetry and CenH3 evolves adaptively to counterbalance deleterious consequences of driving centromeres. Accordingly, adaptively evolving CenH3 has so far been observed only in eukaryotes with asymmetric meiosis. However, if such evolution is a consequence of centromere drive, it should depend not only on meiotic asymmetry but also on monocentric or holokinetic chromosomal structure. Selective pressures acting on CenH3 have never been investigated in organisms with holokinetic meiosis despite the fact that holokinetic chromosomes have been hypothesized to suppress centromere drive. Therefore, the present study evaluates selective pressures acting on the CenH3 gene in holokinetic organisms for the first time, specifically in the representatives of the plant genus Luzula (Juncaceae), in which the kinetochore formation is not co-localized with any type of centromeric repeat. Methods PCR, cloning and sequencing, and database searches were used to obtain coding CenH3 sequences from Luzula species. Codon substitution models were employed to infer selective regimes acting on CenH3 in Luzula. Key Results In addition to the two previously published CenH3 sequences from L. nivea, 16 new CenH3 sequences have been isolated from 12 Luzula species. Two CenH3 isoforms in Luzula that originated by a duplication event prior to the divergence of analysed species were found. No signs of positive selection acting on CenH3 in Luzula were detected. Instead, evidence was found that selection on CenH3 of Luzula might have been relaxed. Conclusions The results indicate that holokinetism itself may suppress centromere drive and, therefore, holokinetic chromosomes might have evolved as a defence against centromere drive.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据