4.7 Article

Multifunctional magnetic sphere-MoS2@Au hybrid for surface-enhanced Raman scattering detection and visible light photo-Fenton degradation of aromatic dyes

期刊

CHEMOSPHERE
卷 223, 期 -, 页码 465-473

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2019.02.073

关键词

Aromatic dye; Surface-enhanced Raman scattering; Photocatalytic degradation; MoS2; Magnetic sphere; Environmental monitoring and restoration

资金

  1. National Natural Science Foundation of China [21705063, 21665011]
  2. Natural Science Foundation of Jiangxi Province [20161BAB203088]

向作者/读者索取更多资源

A ternary hybrid, MNPs-MoS2@Au, composed of gold nanoparticles (AuNPs) grown on a magnetic sphere (MNPs)-MoS2 microflower composite (MNPs-MoS2) was proposed for surface-enhanced Raman scattering (SERS) detection and visible-light photo-Fenton degradation of aromatic dyes. The hybrid was prepared by sequential solvothermal growth of MNPs and MoS2, and electroless deposition of AuNPs. A comparison of results revealed that the synergy among these components endowed the hybrid with a much higher SERS enhancement ability than MNPs, or MNPs@MoS2. The dosage of HAuCl4 and MNPs-MoS2 to prepare the hybrid greatly influenced the SERS activity of the hybrid. Under optimized conditions, quantitative SERS analysis of dyes including CV, MG, and MB was performed with a low detection limit (1 pM, 0.15 nM and 1 nM for CV, MG, and MB, respectively) and adequate reproducibility (RSDs were less than 6% and 11% for CV and MG, respectively). The hybrid could also serve as a visible light-active photo-Fenton catalyst for efficient degradation of aromatic dyes, and the decolorization of 20 mg/L RhB was 90% in 40 min in the presence of H2O2 because of a synergy mechanism among components confirmed by comparison experiment and first-order kinetics study. The multifunctional material prepared here possesses great values in SERS analysis, environmental monitoring, and restoration. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据