4.6 Article

β-MnO2/Metal-Organic Framework Derived Nanoporous ZnMn2O4 Nanorods as Lithium-Ion Battery Anodes with Superior Lithium-Storage Performance

期刊

CHEMISTRY-A EUROPEAN JOURNAL
卷 25, 期 19, 页码 5043-5050

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.201806006

关键词

electrochemistry; lithium; metal-organic frameworks; nanoporous materials; nanostructures

资金

  1. Key Project of Guangdong Province Nature Science Foundation [2017B030311013]
  2. Scientific and Technological Plan of Guangdong Province, P.R. China [201804010169, 2017B020227009, 2017A040405048, 2017A040405047, 2017A040405049, 2016A040403109, 2016A050502054, 2016A050503019]
  3. Scientific and Technological Plan of Guangzhou City, P.R. Chin [201804010169, 2017B020227009, 2017A040405048, 2017A040405047, 2017A040405049, 2016A040403109, 2016A050502054, 2016A050503019]

向作者/读者索取更多资源

Nanoporous ZnMn2O4 nanorods have been successfully synthesized by calcining beta-MnO2/ZIF-8 precursors (ZIF-8 is a type of metal-organic framework). If measured as an anode material for lithium-ion batteries, the ZnMn2O4 nanorods exhibit an initial discharge capacity of 1792 mA h g(-1) at 200 mA g(-1), and an excellent reversible capacity of 1399.8 mA h g(-1) after 150 cycles (78.1 % retention of the initial discharge capacity). Even at 1000 mA g(-1), the reversible capacity is still as high as 998.7 mA h g(-1) after 300 cycles. The remarkable lithium-storage performance is attributed to the one-dimensional nanoporous structure. The nanoporous architecture not only allows more lithium ions to be stored, which provides additional interfacial lithium-storage capacity, but also buffers the volume changes, to a certain degree, during the Li+ insertion/extraction process. The results demonstrate that nanoporous ZnMn2O4 nanorods with superior lithium-storage performance have the potential to be candidates for commercial anode materials in lithium-ion batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据