4.6 Article

Model analysis of gas residence time in an ironmaking blast furnace

期刊

CHEMICAL ENGINEERING SCIENCE
卷 199, 期 -, 页码 50-63

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ces.2018.12.062

关键词

CFD; Blast furnace; RTD; Flow patterns; Transient behavior; Model

资金

  1. Australian Research Council [LP160101100, DP180101232]
  2. Baosteel
  3. China Scholarship Council
  4. Australian Research Council [LP160101100] Funding Source: Australian Research Council

向作者/读者索取更多资源

Gas residence time distribution (RTD) is an effective and convenient indicator for evaluating the performance of complex multiphase chemical reactors including ironmaking blast furnaces (BFs). However, in the open literature, there lacks the systematic RTD research for BFs. In this study, an integrated mathematical model is developed for describing the gas RTD of a BF. The model combines a steady multi-fluid model for describing the in-furnace state of flow and thermo-chemical behavior of gas-solid-liquid phases and a transient model for describing the dynamic behavior of tracer materials. The results show that the gas flow field inside the BF is quite complex, resulting from many factors such as furnace geometry and coupled thermo-chemical behaviors of other phases. The tail of gas RTD curve resulted from the lagging phenomenon of tracer flow inside BFs, is captured. The gas RTD is discussed by using mean residence time, dispersion of molecules distribution, cumulative distribution function and residence time intensity function. Under the given BF conditions, mean residence time and space time of gas fluids are predicted as 13.5 s and 16.3 s, respectively. The existence of stagnant flow in the BF can be both derived and directly identified. Moreover, it is indicated the gas flow patterns in the BF are composed of piston-type flow, stagnant flow and limited mixing flow. This study provides a cost-effective tool for better understanding BF gas flow dynamics and optimizing BF operations. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据