4.8 Article

Structural basis of allosteric regulation of Tel1/ATM kinase

期刊

CELL RESEARCH
卷 29, 期 8, 页码 655-665

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41422-019-0176-1

关键词

-

资金

  1. National Key Research and Development Program of China [2018YFC1003400]
  2. National Natural Science Foundation of China [31890783, 31770808, 31570726]
  3. Science and Technological Fund of Anhui Province for Outstanding Youth [1908085J11]

向作者/读者索取更多资源

ATM/Tel1 is an apical kinase that orchestrates the multifaceted DNA damage response. Mutations of ATM/Tel1 are associated with ataxia telangiectasia syndrome. Here, we report cryo-EM structures of symmetric dimer (4.1 angstrom) and asymmetric dimer (4.3 angstrom) of Saccharomyces cerevisiae Tel1. In the symmetric state, the side chains in Tel1 C-terminus (residues 1129-2787) are discernible and an atomic model is built. The substrate binding groove is completely embedded in the symmetric dimer by the intramolecular PRD and intermolecular LID domains. Point mutations in these domains sensitize the S. cerevisiae cells to DNA damage agents and hinder Tel1 activation due to reduced binding affinity for its activator Xrs2/Nbs1. In the asymmetric state, one monomer becomes more compact in two ways: the kinase N-lobe moves down and the Spiral of alpha-solenoid moves upwards, which resemble the conformational changes observed in active mTOR. The accessibility of the activation loop correlates with the synergistic conformational disorders in the TRD1-TRD2 linker, FATC and PRD domains, where critical post-translational modifications and activating mutations are coincidently condensed. This study reveals a tunable allosteric network in ATM/Tel1, which is important for substrate recognition, recruitment and efficient phosphorylation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据