4.7 Article

Glucagon-like peptide-1 attenuates endothelial barrier injury in diabetes via cAMP/PKA mediated down-regulation of MLC phosphorylation

期刊

BIOMEDICINE & PHARMACOTHERAPY
卷 113, 期 -, 页码 -

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.biopha.2019.108667

关键词

Glucagon-like peptide-1; Advanced glycation end products; Endothelial barrier; Myosin light chain

资金

  1. National Natural Science Foundation of China [81570419, 81470568, 81270372]
  2. Anhui Provincial Natural Science Foundation [1608085MH168]
  3. Cultivation Project for the National Natural Science Foundation of the First Affiliated Hospital of Anhui Medical University [2558]
  4. Research Project for Practice Development of National TCM Clinical Research Bases [JDZX2015133]

向作者/读者索取更多资源

Objective: Glucagon-like peptide-1 (GLP-1) showed protective effects on endothelium-dependent dilatation. Since endothelial barrier dysfunction also plays a pivotal role in atherosclerosis, this study was designed to investigate the effects of GLP-1 on endothelial barrier function in diabetic aortic endothelium and explore the underlying mechanism. Methods: For in vivo studies, diabetic rats were established and subjected to 12- and 24-week treatment of exenatide. The morphological changes of aortic endothelium were observed with transmission electron microscope. A permeability assay of aortic endothelium was performed using the surface biotinylation technique. Protein expression was detected by immunohistochemical analysis and Western blots. For in vitro studies, human umbilical vein endothelial cells (HUVECs) were cultured in medium enriched with advanced glycation end products (AGEs) or AGEs plus GLP-1 and other reagents. The integrity of endothelium was evaluated by endothelial monolayer permeability assay and transendothelial resistance. The in vitro expressions of relevant proteins in signaling pathways were also detected by immunofluorescence and Western blots. Results: In vivo, the enhanced aortic endothelial permeability in diabetic aortas were attenuated by exenatide treatment. Additionally, myosin light chain (MLC) phosphorylation, related to actomyosin contractility, and activation of its upstream targets in diabetic aorta were inhibited after administration of exenatide. In vitro, the endothelial monolayer permeability and the assembly of stress fibers were reduced by GLP-1 intervention under diabetic condition. Meanwhile, AGE-induced MLC phosphorylation mediating ECs contractility was inhibited by GLP-1. Furthermore, GLP-1 down-regulated the upstream targets of MLC phosphorylation, including RAGE, Rho/ROCK and MAPK signaling pathways. Intriguingly, the effects of GLP-1 elicited on ECs contractility and barrier function in diabetes were blunted by inhibition of GLP-1R, cAMP or PKA and stimulation of Rho/ROCK and MAPK signaling pathways. Conclusion: The findings of this study suggest that the stabilizing effect of GLP-1 on the endothelial barrier and contraction of AGE-treated ECs is caused by GLP-1R/cAMP/PKA activation and the subsequent inactivation of RAGE/Rho/ROCK as well as MAPK signaling pathways.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据