4.6 Article

Synergistic Catalysis of Ruthenium Nanoparticles and Polyoxometalate Integrated Within Single UiO-66 Microcrystals for Boosting the Efficiency of Methyl Levulinate to γ-Valerolactone

期刊

FRONTIERS IN CHEMISTRY
卷 7, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fchem.2019.00042

关键词

upgrading of biomass; synergistic catalysis; metal-organic framework; polyoxometalate; gamma-valerolactone

资金

  1. National Natural Science Foundation of China [21576243]
  2. Zhejiang Provincial Natural Science Foundation of China [LY18B060006, LY18B030006]

向作者/读者索取更多资源

The synthesis of heterogeneous cooperative catalysts in which two or more catalytically active components are spatially separated within a single material has generated considerable research efforts. The multiple functionalities of catalysts can significantly improve the efficiency of existing organic chemical transformations. Herein, we introduce ruthenium (Ru) nanoparticles (NPs) on the surfaces of a metal-organic framework pre-encapsulated with polyoxometalate silicotungstic acid (SiW) UiO-66 (University of Oslo [UiO]) and prepared a 2.0% Ru/11.7% SiW@UiO-66 porous hybrid using the impregnation method. The close synergistic effect of metal Ru NPs, SiW, and UiO-66 endow 2.0% Ru/11.7% SiW@UiO-66 with increased activity and stability for complete methyl levulinate (ML) conversion and exclusive gamma-valerolactone (GVL) selectivity at mild conditions of 80 degrees C and at a H-2 pressure of 0.5 MPa. Effectively, this serves as a model reaction for the upgrading of biomass and outperforms the performances of the constituent parts and that of the physical mixture (SiW + Ru/UiO-66). The highly dispersed Ru NPs act as active centers for hydrogenation, while the SiW molecules possess Bronsted acidic sites that cooperatively promote the subsequent lactonization of MHV to generate GVL, and the UiO-66 crystal accelerates the mass transportation facilitated by its own porous structure with a large surface area.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据