4.2 Article

Time-resolved x-ray crystallography capture of a slow reaction tetrahydrofolate intermediate

期刊

STRUCTURAL DYNAMICS-US
卷 6, 期 2, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.5086436

关键词

-

资金

  1. Division of General Medical Sciences of the NIH [1R35GM-118039]
  2. DOE Office of Science [DE-AC02-06CH11357]

向作者/读者索取更多资源

Time-resolved crystallography is a powerful technique to elucidate molecular mechanisms at both spatial (angstroms) and temporal (picoseconds to seconds) resolutions. We recently discovered an unusually slow reaction at room temperature that occurs on the order of days: the in crystalline reverse oxidative decay of the chemically labile (6S)-5,6,7,8-tetrahydrofolate in complex with its producing enzyme Escherichia coli dihydrofolate reductase. Here, we report the critical analysis of a representative dataset at an intermediate reaction time point. A quinonoid-like intermediate state lying between tetrahydrofolate and dihydrofolate features a near coplanar geometry of the bicyclic pterin moiety, and a tetrahedral sp(3) C6 geometry is proposed based on the apparent mFo-DFc omit electron densities of the ligand. The presence of this intermediate is strongly supported by Bayesian difference refinement. Isomorphous Fo-Fo difference map and multi-state refinement analyses suggest the presence of end-state ligand populations as well, although the putative intermediate state is likely the most populated. A similar quinonoid intermediate previously proposed to transiently exist during the oxidation of tetrahydrofolate was confirmed by polarography and UV-vis spectroscopy to be relatively stable in the oxidation of its close analog tetrahydropterin. We postulate that the constraints on the ligand imposed by the interactions with the protein environment might be the origin of the slow reaction observed by time-resolved crystallography. (C) 2019 Author(s).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据