4.6 Article

Graphene/RuO2 nanocrystal composites as sulfur host for lithium-sulfur batteries

期刊

JOURNAL OF ENERGY CHEMISTRY
卷 35, 期 -, 页码 204-211

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jechem.2019.03.017

关键词

Enhanced redox reaction kinetics; Polysulfide adsorption; Density functional theory; Lithium sulfur batteries; High sulfur content

资金

  1. Research Grants Council (GRF) [16212814, 16208718]
  2. Innovation and Technology Commission (ITF Project) of Hong Kong SAR [ITS/001/17]

向作者/读者索取更多资源

An optimized graphene/RuO2/S composite is prepared by hydrothermal growth of RuO2 particles on graphene oxide sheets as the positive electrode for rechargeable lithium-sulfur batteries. The electrode with 6.1 wt% RuO2 nanocrystals and a high sulfur content of 79.0 wt% delivers an optimal electrochemical performance with high residual capacities of 508 mAh g(-1) after 200 cycles and 389 mAh g(-1) after 800 cycles at 1 C with a low capacity decay of 0.054%. The RuO2 nanocrystals promote the redox reaction kinetics and facilitate the transformation of sulfur chemistry, leading to large improvements in reversibility and rate capability of the composite electrode. The density functional theory calculations signify the formation of Li-O and Ru-S bonds through chemical interactions between RuO2 and Li polysulfides while the adsorption energies between graphene and polysulfide species are much higher in the presence of RuO2 than that of the neat graphene acting alone. These discoveries support the efficient entrapment of polysulfides by the composite electrode to the benefit of enhanced cyclic stability of the battery. (C) 2019 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Nanoscience & Nanotechnology

Superinsulating BNNS/PVA Composite Aerogels with High Solar Reflectance for Energy-Efficient Buildings

Jie Yang, Kit-Ying Chan, Harun Venkatesan, Eunyoung Kim, Miracle Hope Adegun, Jeng-Hun Lee, Xi Shen, Jang-Kyo Kim

Summary: In pursuit of global carbon neutralization, the development of novel aerogels with superior thermal insulation and high solar reflectance for energy-efficient buildings has become a compelling choice. By utilizing a solvent-assisted freeze-casting strategy, boron nitride nanosheet/polyvinyl alcohol (BNNS/PVA) composite aerogels with tailored alignment channel structure are produced, showcasing ultralow thermal conductivity and exceptional solar reflectance properties. The anisotropic BNNS/PVA composite aerogel presents great potential for applications in energy-saving buildings.

NANO-MICRO LETTERS (2022)

Article Chemistry, Physical

Deciphering the exceptional kinetics of hierarchical nitrogen-doped carbon electrodes for high-performance vanadium redox flow batteries

Yang Li, Shida Yang, Yunhe Zhao, Nauman Mubarak, Mengyang Xu, Muhammad Ihsan-Ul-Haq, Tianshou Zhao, Qing Chen, Jang-Kyo Kim

Summary: This study investigates the exceptional kinetics of VO2+/VO2+ on a hierarchical nitrogen-doped carbon (HNC) electrode, revealing higher rate constants and adsorption energies compared to undoped porous carbon electrodes. The hierarchy is found to be related to the high specific area. Additionally, the HNC electrode shows exceptional energy efficiency at high current density.

JOURNAL OF MATERIALS CHEMISTRY A (2022)

Review Chemistry, Physical

Graphene and MXene-based porous structures for multifunctional electromagnetic interference shielding

Xi Shen, Jang-Kyo Kim

Summary: This review summarizes the recent progress in developing porous composites and structures for electromagnetic interference (EMI) shielding using graphene and MXene nanosheets. The relationships between material properties, microstructures, and EMI shielding performance are explored, and different technological approaches to constructing porous structures are compared. The review also highlights the multifunctional applications of porous composites and their unique compositions and microstructures.

NANO RESEARCH (2023)

Review Materials Science, Multidisciplinary

Heusler alloys: Past, properties, new alloys, and prospects

Sheron Tavares, Kesong Yang, Marc A. Meyers

Summary: Heusler alloys have emerged as exciting materials for various functional applications due to their ordered structure and unique properties. This review article discusses the discovery, magnetic and electronic properties, mechanical properties, and computational design of Heusler alloys. It also explores the challenges and future directions in this field.

PROGRESS IN MATERIALS SCIENCE (2023)

Article Energy & Fuels

Unlocking cell chemistry evolution with operando fibre optic infrared spectroscopy in commercial Na(Li)-ion batteries

C. Gervillie-Mouravieff, C. Boussard-Pledel, Jiaqiang Huang, C. Leau, L. Albero Blanquer, M. Ben Yahia, M-L Doublet, S. T. Boles, X. H. Zhang, J. L. Adam, J-M Tarascon

Summary: A new method for monitoring the dynamic chemistry inside batteries using operando infrared spectroscopy and optical fiber sensors has been developed. This method reveals the dynamic mechanisms of key processes in commercial Li-ion and Na-ion batteries.

NATURE ENERGY (2022)

Article Chemistry, Multidisciplinary

Mechanochromic Optical/Electrical Skin for Ultrasensitive Dual-Signal Sensing

Heng Zhang, Haomin Chen, Jeng-Hun Lee, Eunyoung Kim, Kit-Ying Chan, Harun Venkatesan, Xi Shen, Jinglei Yang, Jang-Kyo Kim

Summary: This research aims to design a flexible optical/electrical skin capable of responding to complex stimuli with interactive feedback of human-readable structural colors. The OE-skin consists of various layers including an ionic electrode, elastomer dielectric layer, chromotropic layer, and a conductive carbon nanotube/MXene layer. It delivers an ultrafast, accurate response for capacitive pressure sensing and visualizes complex deformations in high-resolution spatial colors.

ACS NANO (2023)

Article Chemistry, Multidisciplinary

Anti-Fatigue Hydrogel Electrolyte for All-Flexible Zn-Ion Batteries

Qun Liu, Zhenlu Yu, Qiuna Zhuang, Jang-Kyo Kim, Feiyu Kang, Biao Zhang

Summary: Hydrogel electrolytes have been widely studied in Zn metal batteries for wearable electronics, but the mechanical stability of the hydrogel under repeated deformation has been overlooked, resulting in unsatisfactory performance. This study explores the compressive fatigue-resistance properties of the hydrogel electrolyte and identifies the critical roles of the salt and copolymer matrix in crack initiation and propagation. An optimal Zn(ClO4)(2)-polyacrylamide/chitosan hydrogel electrolyte (C-PAMCS) is found to exhibit an unprecedented lifespan and high areal capacity for Zn//Zn cells, enabling potential applications in flexible Zn-ion batteries.

ADVANCED MATERIALS (2023)

Review Materials Science, Multidisciplinary

Templating strategies for 3D-structured thermally conductive composites: Recent advances and thermal energy applications

Jie Yang, Xi Shen, Wei Yang, Jang-Kyo Kim

Summary: This review summarizes recent advances in the development of thermally conductive polymer composites using various templating methods, including self-templating, sacrificial templating, foam-templating, ice-templating, and template-directed chemical vapor deposition techniques. These unique methods allow for the fabrication of three-dimensional interconnected fillers with segregated, cellular, lamellar, and radially aligned structures, which are correlated to the thermal conductivity of the composites. Moreover, the review highlights the use of multiscale structural design strategies combined with different templating methods to further improve the thermal conductivity of the composites.

PROGRESS IN MATERIALS SCIENCE (2023)

Article Chemistry, Multidisciplinary

Homogenizing Zn Deposition in Hierarchical Nanoporous Cu for a High-Current, High Areal-Capacity Zn Flow Battery

Yang Li, Liangyu Li, Yunhe Zhao, Canbin Deng, Zhibin Yi, Diwen Xiao, Nauman Mubarak, Mengyang Xu, Jie Li, Guangfu Luo, Qing Chen, Jang-Kyo Kim

Summary: A hierarchical nanoporous electrode is developed by alloying Cu foam with Zn to homogenize the deposition and create nanoscale pores. This electrode shows uniform Zn deposition and stable performance in a Zn-I-2 flow battery, meeting practical demands.
Article Chemistry, Physical

Uniform SnSe nanoparticles on 3D graphene host enabling a dual-nucleation-site interface for dendrite-free sodium metal batteries

Mengyang Xu, Zhenjing Liu, Yang Li, Nauman Mubarak, Hoilun Wong, Mohsen Tamtaji, Yunhe Zhao, Yuyin Li, Jun Wang, Jiawen You, Hongwei Liu, Yuting Cai, Kenan Zhang, Feng Xu, Khalil Amine, Jang-Kyo Kim, Zhengtang Luo

Summary: This study presents the synthesis of tin selenide nanoparticles grown on highly conductive, porous 3D graphene foam as a stable host for sodium metal anodes and reveals their energy storage mechanism through conversion reactions. The SnSe@GF electrode exhibits remarkable reversibility after 1500 cycles in asymmetric cells and extraordinary cyclic stability and low overpotentials for 2000 h in symmetric cells. The outstanding performance is attributed to the conversion of crystalline SnSe into low-crystallinity Na15Sn4 and Na2Se dual nucleation sites after pre-sodiation, which enables the formation of a unique interface with high sodium affinity and abundant active sites, resulting in uniform sodium nucleation/plating and dendrite suppression.

ENERGY STORAGE MATERIALS (2023)

Article Chemistry, Physical

Unraveling SEI formation and cycling behavior of commercial Ni-rich NMC Li-ion pouch cells through operando optical characterization

C. Gervillie-Mouravieff, L. Albero Blanquer, C. Alphen, Jiaqiang Huang, J. -M. Tarascon

Summary: In this study, temperature data were collected using optical fiber Bragg grating sensors placed inside commercial pouch cells, allowing for monitoring the heat release during the formation cycles and real-driving cycling. The research provides insights into the contribution of the anode and the impact of additives on overall heat generation, as well as a comparison of the heat generation of NMC-based batteries under varying power and voltage levels. Continuous monitoring of battery heat release throughout its lifespan enhances our understanding of interconnected materials surfaces and electrolyte reactions.

JOURNAL OF POWER SOURCES (2023)

Review Chemistry, Physical

Building Smarter Aqueous Batteries

Canbin Deng, Yiqing Li, Jiaqiang Huang

Summary: Amidst the global trend of advancing renewable energies toward carbon neutrality, energy storage becomes increasingly critical due to the intermittency of renewables. As an alternative to lithium-ion batteries (LIBs), aqueous batteries have received growing attention for large-scale energy storage due to their economical and safe features. In this review, recent advances in sensing techniques and multifunctional battery-sensor systems together with self-healing methods in aqueous batteries is summarized, highlighting the significant role of artificial intelligence in designing and optimizing aqueous batteries with high efficiency.

SMALL METHODS (2023)

Article Chemistry, Physical

Engineering anisotropic structures of thermally insulating aerogels with high solar reflectance for energy-efficient cooling applications

Eunyoung Kim, Kit-Ying Chan, Jie Yang, Harun Venkatesan, Miracle Hope Adegun, Heng Zhang, Jeng-Hun Lee, Xi Shen, Jang-Kyo Kim

Summary: In this study, the microstructure and thermal conductivity of waterborne polyurethane (WPU) aerogels were tailored through unidirectional freeze-casting at different freezing temperatures. The addition of two-dimensional boron nitride nanosheets (BNNSs) further intensified the anisotropy of WPU aerogels. The resulting composite aerogel exhibited low density and low thermal conductivity, making it suitable for efficient thermal insulation applications and offering better thermal management under direct sunlight.

JOURNAL OF MATERIALS CHEMISTRY A (2023)

Article Multidisciplinary Sciences

Detangling electrolyte chemical dynamics in lithium sulfur batteries by operando monitoring with optical resonance combs

Fu Liu, Wenqing Lu, Jiaqiang Huang, Vanessa Pimenta, Steven Boles, Rezan Demir-Cakan, Jean-Marie Tarascon

Summary: By using fiber-based sensors, the dissolved polysulfide concentration in the electrolyte during cell charge and discharge can be tracked and quantified, providing insights on stability and performance.

NATURE COMMUNICATIONS (2023)

Article Oncology

CpG Site-Specific Methylation-Modulated Divergent Expression of PRSS3 Transcript Variants Facilitates Nongenetic Intratumor Heterogeneity in Human Hepatocellular Carcinoma

Shuye Lin, Hanli Xu, Mengdi Pang, Xiaomeng Zhou, Yuanming Pan, Lishu Zhang, Xin Guan, Xiaoyue Wang, Bonan Lin, Rongmeng Tian, Keqiang Chen, Xiaochen Zhang, Zijiang Yang, Fengmin Ji, Yingying Huang, Wu Wei, Wanghua Gong, Jianke Ren, Ji Ming Wang, Mingzhou Guo, Jiaqiang Huang

Summary: This study provides the first evidence for the transcriptional and functional characterization of PRSS3 transcripts in HCC. Aberrant expression of divergent PRSS3 splice variants disrupted by site-specific CpG methylation may integrate the effects of oncogenic PRSS3-V2 and tumor-suppressive PRSS3-V1, resulting in the molecular diversity and functional plasticity of PRSS3 in HCC. Dysregulated expression of PRSS3-V2 by site-specific CpG methylation may have potential diagnostic value for patients with early HCC.

FRONTIERS IN ONCOLOGY (2022)

Article Chemistry, Applied

In-situ coating and surface partial protonation co-promoting performance of single-crystal nickel-rich cathode in all-solid-state batteries

Maoyi Yi, Jie Li, Mengran Wang, Xinming Fan, Bo Hong, Zhian Zhang, Aonan Wang, Yanqing Lai

Summary: In this study, polyacrylic acid (PAA) was used as a binder for the cathode in all-solid-state batteries. Through H+/Li+ exchange reaction, a uniform PAA-Li coating layer was formed on the cathode surface, improving the stability of the cathodic interface and the crystal structure. The SC-NCM83-PAA cathode exhibited superior cycling performance compared to traditional PVDF binder.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

Arbitrary skin metallization by pencil-writing inspired solid-ink rubbing for advanced energy storage and harvesting

Yonghan Zhou, Zhongfeng Ji, Wenrui Cai, Xuewei He, Ruiying Bao, Xuewei Fu, Wei Yang, Yu Wang

Summary: By learning from the pencil-writing process, a solid-ink rubbing technology (SIR-tech) has been invented to develop durable metallic coatings on diverse substrates. The composite metallic skin by SIR-tech outperforms pure liquid-metal coating and shows great potential for various applications.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

Coupling Sb2WO6 microflowers and conductive polypyrrole for efficient potassium storage by enhanced conductivity and K plus diffusivity

Ruiqi Tian, Hehe Zhang, Zeyu Yuan, Yuehua Man, Jianlu Sun, Jianchun Bao, Ming-Sheng Wang, Xiaosi Zhou

Summary: In this study, polypyrrole-encapsulated Sb2WO6 microflowers were synthesized and demonstrated to exhibit excellent potassium storage properties and cycling stability. The improved performance of Sb2WO6@PPy was attributed to the unique microflower structure, enhanced electronic conductivity, and protective PPy coating.

JOURNAL OF ENERGY CHEMISTRY (2024)

Review Chemistry, Applied

Physics-based battery SOC estimation methods: Recent advances and future perspectives

Longxing Wu, Zhiqiang Lyu, Zebo Huang, Chao Zhang, Changyin Wei

Summary: This paper presents a comprehensive survey on physics-based state of charge (SOC) algorithms applied in advanced battery management system (BMS). It discusses the research progresses of physical SOC estimation methods for lithium-ion batteries and presents future perspectives for this field.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

d-d Orbital coupling induced by crystal-phase engineering assists acetonitrile electroreduction to ethylamine

Honggang Huang, Yao Chen, Hui Fu, Cun Chen, Hanjun Li, Zhe Zhang, Feili Lai, Shuxing Bai, Nan Zhang, Tianxi Liu

Summary: The d-d orbital coupling induced by crystal-phase engineering effectively adjusts the electronic structure of electrocatalysts, improving their activity and stability, which is significant for electrocatalyst research.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

In-doping collaboratively controlling back interface and bulk defects to achieve efficient flexible CZTSSe solar cells

Quanzhen Sun, Yifan Li, Caixia Zhang, Shunli Du, Weihao Xie, Jionghua Wu, Qiao Zheng, Hui Deng, Shuying Cheng

Summary: In this study, indium (In) ions were introduced into flexible Cu2ZnSn(S,Se)(4) (CZTSSe) solar cells to modify the back interface and passivate deep level defects in CZTSSe bulk. The results showed that In doping effectively inhibited the formation of secondary phase and V-Sn defects, decreased the barrier height at the back interface, passivated deep level defects in CZTSSe bulk, increased carrier concentration, and significantly reduced the V-OC deficit. Eventually, a flexible CZTSSe solar cell with a power conversion efficiency of 10.01% was achieved. This synergistic strategy of interface modification and bulk defects passivation through In incorporation provides a new approach for fabricating efficient flexible kesterite-based solar cells.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

Toward a comprehensive hypothesis of oxygen-evolution reaction in the presence of iron and gold

Negah Hashemi, Jafar Hussain Shah, Cejun Hu, Subhajit Nandy, Pavlo Aleshkevych, Sumbal Farid, Keun Hwa Chae, Wei Xie, Taifeng Liu, Junhu Wang, Mohammad Mahdi Najafpour

Summary: This study investigates the effects of Fe on the oxygen-evolution reaction (OER) in the presence of Au. The study identifies two distinct areas of OER associated with Fe and Au sites at different overpotentials. Various factors were varied to observe the behaviors of FeOxHy/Au during OER. The study reveals strong electronic interaction between Fe and Au, and proposes a lattice OER mechanism based on FeOxHy.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

Exploring the impact of Nafion modifier on electrocatalytic CO2 reduction over Cu catalyst

Yingshi Su, Yonghui Cheng, Zhen Li, Yanjia Cui, Caili Yang, Ziyi Zhong, Yibing Song, Gongwei Wang, Lin Zhuang

Summary: This study systematically investigates the key roles of Nafion on Cu nanoparticles electrocatalyst for CO2RR. The Nafion modifier suppresses the hydrogen evolution reaction, increases CO2 concentration and mass transfer process, and activates CO2 molecule to enhance C2 product generation. As a result, the selectivity of the hydrogen evolution reaction is reduced and the efficiency of C2 products is significantly improved.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

Electronic structure and spin state regulation of vanadium nitride via a sulfur doping strategy toward flexible zinc-air batteries

Daijie Deng, Honghui Zhang, Jianchun Wu, Xing Tang, Min Ling, Sihua Dong, Li Xu, Henan Li, Huaming Li

Summary: By doping sulfur into vanadium nitride, the S-VN/Co/NS-MC catalyst exhibits enhanced oxygen reduction reaction activity and catalytic performance. When applied in liquid and flexible ZABs, it shows higher power density, specific capacity, and cycling stability.

JOURNAL OF ENERGY CHEMISTRY (2024)

Review Chemistry, Applied

Self-assembly of perovskite nanocrystals: From driving forces to applications

Yi Li, Fei Zhang

Summary: Self-assembly of metal halide perovskite nanocrystals holds significant application value in the fields of display, detector, and solar cell due to their unique collective properties. This review covers the driving forces, commonly used methods, and different self-assembly structures of perovskite nanocrystals. Additionally, it summarizes the collective optoelectronic properties and application areas of perovskite superlattice structures, and presents an outlook on potential issues and future challenges in the development of perovskite nanocrystals.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

Ag-integrated mixed metallic Co-Fe-Ni-Mn hydroxide composite as advanced electrode for high-performance hybrid supercapacitors

Anki Reddy Mule, Bhimanaboina Ramulu, Shaik Junied Arbaz, Anand Kurakula, Jae Su Yu

Summary: Direct growth of redox-active noble metals and rational design of multifunctional electrochemical active materials play crucial roles in developing novel electrode materials for energy storage devices. In this regard, silver (Ag) has attracted great attention in the design of efficient electrodes. The construction of multifaceted heterostructure cobalt-iron hydroxide (CFOH) nanowires (NWs)@nickel cobalt manganese hydroxides and/or hydrate (NCMOH) nanosheets (NSs) on the Ag-deposited nickel foam and carbon cloth (i.e., Ag/ NF and Ag/CC) substrates is reported. The as-fabricated Ag@CFOH@NCMOH/NF electrode delivered superior areal capacity value of 2081.9 μA h cm-2 at 5 mA cm-2. Moreover, as-assembled hybrid cell based on NF (HC/NF) device exhibited remarkable areal capacity value of 1.82 mA h cm-2 at 5 mA cm-2 with excellent rate capability of 74.77% even at 70 mA cm-2. Furthermore, HC/NF device achieved maximum energy and power densities of 1.39 mW h cm-2 and 42.35 mW cm-2, respectively. To verify practical applicability, both devices were also tested to serve as a self-charging station for various portable electronic devices.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

Insights into ionic association boosting water oxidation activity and dynamic stability

Zanling Huang, Shuqi Zhu, Yuan Duan, Chaoran Pi, Xuming Zhang, Abebe Reda Woldu, Jing-Xin Jian, Paul K. Chu, Qing-Xiao Tong, Liangsheng Hu, Xiangdong Yao

Summary: In this study, it was found that Ni sites act as a host to attract Fe(III) to form Fe(Ni)(III) binary centers, which promote the oxygen evolution reaction (OER) activity and stability by cyclical formation of intermediates. Additionally, other ions can also catalyze the OER process on different electrodes.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

Reversible Mn2+/Mn4+double-electron redox in P3-type layer-structured sodium-ion cathode

Jie Zeng, Jian Bao, Ya Zhang, Xun-Lu Li, Cui Ma, Rui-Jie Luo, Chong-Yu Du, Xuan Xu, Zhe Mei, Zhe Qian, Yong-Ning Zhou

Summary: The balance between cationic redox and oxygen redox is crucial for achieving high energy density and cycle stability in sodium batteries. This study demonstrates the reversible Mn2+/Mn4+ redox in a P3-Na0.65Li0.2Co0.05Mn0.75O2 cathode material through Co substitution, effectively suppressing the contribution of oxygen redox and improving structure stability.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

The initial stages of Li2O2 formation during oxygen reduction reaction in Li-O2 batteries: The significance of Li2O2 in charge-transfer reactions within devices

Daniela M. Josepetti, Bianca P. Sousa, Simone A. J. Rodrigues, Renato G. Freitas, Gustavo Doubek

Summary: Lithium-oxygen batteries have high energy density potential but face challenges in achieving high cyclability. This study used operando Raman experiments and electrochemical impedance spectroscopy to evaluate the initial discharge processes in porous carbon electrodes. The results indicate that the reaction occurs at the Li2O2 surface and the growth of Li2O2 forms a more compact and homogeneous structure.

JOURNAL OF ENERGY CHEMISTRY (2024)

Article Chemistry, Applied

Porous metal oxides in the role of electrochemical CO2 reduction reaction

Ziqi Zhang, Jinyun Xu, Yu Zhang, Liping Zhao, Ming Li, Guoqiang Zhong, Di Zhao, Minjing Li, Xudong Hu, Wenju Zhu, Chunming Zheng, Xiaohong Sun

Summary: This paper explores the challenge of increasing global CO2 emissions and highlights the role of porous metal oxide materials in electrocatalytic reduction of CO2 (CO2RR). Porous metal oxides offer high surface area and tunability for optimizing CO2RR reaction mechanisms.

JOURNAL OF ENERGY CHEMISTRY (2024)