4.2 Article

Rapid Enkephalin Delivery Using Exosomes to Promote Neurons Recovery in Ischemic Stroke by Inhibiting Neuronal p53/Caspase-3

期刊

BIOMED RESEARCH INTERNATIONAL
卷 2019, 期 -, 页码 -

出版社

HINDAWI LTD
DOI: 10.1155/2019/4273290

关键词

-

向作者/读者索取更多资源

No pharmacological treatment is currently available to protect brain from neuronal damage after ischemic stroke. Recent studies found that enkephalin may play an important role in neuron regeneration. We assembled a homogeneous size vesicle constituted by transferrin, exosomes, and enkephalin. Immunofluorescence assay showed that transferrin was combined with the exosomes and enkephalin was packaged into the vesicle; thus this complex was called tar-exo-enkephalin. In vitro studies were performed using rat primary hippocampal neurons and the results showed that enkephalin decreased p53 and caspase-3 levels to 47.6% and 67.2%, respectively, compared to neurons treated with glutamate, thus inhibiting neuron apoptosis caused by glutamate. An in vivo experiment in rats was also carried out using a transient middle cerebral artery occlusion (tMCAO)/reperfusion model and tar-exo-enkephalin treatment was performed after tMCAO. The results showed that tar-exo-enkephalin crossed the blood brain barrier (BBB) and decreased the levels of LDH, p53, caspase-3, and NO by 41.9, 52.6, 45.5, and 57.9% compared to the tMCAO rats, respectively. In addition, tar-exo-enkephalin improved brain neuron density and neurological score after tMCAO. These findings suggest that the use of exogenous enkephalin might promote neurological recovery after stroke.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据