4.3 Article

A Molecular Docking Approach to Evaluate the Pharmacological Properties of Natural and Synthetic Treatment Candidates for Use against Hypertension

出版社

MDPI
DOI: 10.3390/ijerph16060923

关键词

angiotensin-converting enzyme; ligands; hypertension; molecular docking; drug designing

资金

  1. Deanship of Scientific Research at King Saud University, KSA through the Prolific Research Group Project [PRG-1436-011]
  2. Higher Education Commission (HEC), Pakistan [2049/SRGP]

向作者/读者索取更多资源

Cardiovascular diseases (CVDs) have become the leading cause of disability and death worldwide, particularly in low- and middle-income countries. Hypertension, a major cause of CVD progression, is widely attributable to genetic, behavioral, and environmental risk factors. Among the genetic reasons, angiotensin II enzyme, produced as a result of abnormal functioning of the renin-angiotensin system, is reported as the foremost cause of hypertension. A cascade of genes, including those encoding for WNK kinases (WNK1 and WNK4), Bp1, Bp2, angiotensinogen, and other enzymes, is involved in the conversion of angiotensin I to angiotensin II. However, the angiotensin-converting enzyme (ACE) plays a crucial role in this pathway. Therefore, ACE could be a potential therapeutic target in regulating the conversion of angiotensin I to angiotensin II and eventually controlling hypertension. In this study, a molecular docking-based approach was utilized for identifying and evaluating potential inhibitors of ACE present in herbs, other natural sources, and synthetic sources, on the basis of these compounds' binding affinities and other physicochemical features. In addition, the suitability of these inhibitors as drugs for biological systems, considering their adsorption, distribution, metabolism, and excretion (ADME), was predicted using Lipinski's rule. In conclusion, our study provides a novel and clearer insight into the interaction properties of known putative inhibitors of ACE.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据