4.7 Article

Imatinib: Major photocatalytic degradation pathways in aqueous media and the relative toxicity of its transformation products

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 655, 期 -, 页码 547-556

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.scitotenv.2018.11.270

关键词

Imatinib; Tyrosine kinase inhibitors; Toxicity; Photocatalytic degradation; Pharmaceuticals; LC-ESI-MSn

资金

  1. Ile de France Region

向作者/读者索取更多资源

Imatinib (IMA) is a highly potent tyrosine kinase inhibitor used as first-line anti-cancer drug in the treatment of chronic myeloid leukemia. Due to its universal mechanism of action, IMA also has endocrine and mutagenic disrupting effects in vivo and in vitro, which raises the question of its environmental impact. However, to date, very little information is available on its environmental fate and the potential role of its transformation products (TPs) on aquatic organisms. Given the IMA resistance to hydrolysis and direct photolysis according to the literature, we sought to generate TPs through oxidative and radical conditions using the AOPs pathway. Thus, the reactivity of the cytotoxic drug IMA in water in the presence of center dot OH and h+ was investigated for the first time in the present work. In this regard, a non-targeted screening approach was applied in order to reveal its potential TPs. The tentative structural elucidation of the detected TPs was performed by LC-HRMSn. The proposed approach allowed detecting a total of twelve TPs, among which eleven are being described for the first time in this work. Although the structures of these TPs could not be positively confirmed due to lack of standards, their chemical formulas and product ions can be added to databases, which will allow their screening in future monitoring studies. Using the quantitative structure-activity relationship (QSAR) approach and rule-based software, we have shown that the detected TPs possess, like their parent molecule, comparable acute toxicity as well as mutagenic and estrogenic potential. In addition to the in silico studies, we also found that the samples obtained at different exposure times to oxidative conditions, including those where IMA is no longer detected, retained toxicity in vitro. Such results suggest further studies are needed to increase our knowledge of the impact of imatinib on the environment. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据