4.8 Article

26S Proteasomes are rapidly activated by diverse hormones and physiological states that raise cAMP and cause Rpn6 phosphorylation

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1809254116

关键词

proteasome phosphorylation; hormones; ubiquitin proteasome system; protein degradation; cAMP

资金

  1. NIH National Institute of General Medical Sciences [R01 GM051923-20, F32 GM128322]
  2. Cure Alzheimer's Fund
  3. Muscular Dystrophy Association Grant [MDA-419143]
  4. Genentech
  5. Project ALS grant

向作者/读者索取更多资源

Pharmacological agents that raise cAMP and activate protein kinase A (PKA) stimulate 26S proteasome activity, phosphorylation of subunit Rpn6, and intracellular degradation of misfolded proteins. We investigated whether a similar proteasome activation occurs in response to hormones and under various physiological conditions that raise cAMP. Treatment of mouse hepatocytes with glucagon, epinephrine, or forskolin stimulated Rpn6 phosphorylation and the 26S proteasomes' capacity to degrade ubiquitinated proteins and peptides. These agents promoted the selective degradation of short-lived proteins, which are misfolded and regulatory proteins, but not the bulk of cell proteins or lysosomal proteolysis. Proteasome activities and Rpn6 phosphorylation increased similarly in working hearts upon epinephrine treatment, in skeletal muscles of exercising humans, and in electrically stimulated rat muscles. In WT mouse kidney cells, but not in cells lacking PKA, treatment with antidiuretic hormone (vasopressin) stimulated within 5-minutes proteasomal activity, Rpn6 phosphorylation, and the selective degradation of short-lived cell proteins. In livers and muscles of mice fasted for 1248 hours cAMP levels, Rpn6 phosphorylation, and proteasomal activities increased without any change in proteasomal content. Thus, in vivo cAMP-PKA-mediated proteasome activation is a common cellular response to diverse endocrine stimuli and rapidly enhances the capacity of target tissues to degrade regulatory and misfolded proteins (e.g., proteins damaged upon exercise). The increased destruction of preexistent regulatory proteins may help cells adapt their protein composition to new physiological conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据