4.6 Article

Phenotypic subgrouping and multi-omics analyses reveal reduced diazepam-binding inhibitor (DBI) protein levels in autism spectrum disorder with severe language impairment

期刊

PLOS ONE
卷 14, 期 3, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0214198

关键词

-

资金

  1. Ratchadaphiseksomphot Endowment Fund of Chulalongkorn University [CU59-004-HR]
  2. 90th Anniversary Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund) [GCUGR1125601057M 533, GCUGR1125601056M 53-2]
  3. Graduate School, Chulalongkorn University
  4. Faculty of Allied Health Sciences, Chulalongkorn University
  5. Thailand Research Fund [PHD/0029/2561]
  6. 100th Anniversary Chulalongkorn University Fund
  7. NIEHS [R21 ES023061, R21 ES028124]
  8. National Institute of Mental Health [1U24 MH081810]

向作者/读者索取更多资源

Background The mechanisms underlying autism spectrum disorder (ASD) remain unclear, and clinical biomarkers are not yet available for ASD. Differences in dysregulated proteins in ASD have shown little reproducibility, which is partly due to ASD heterogeneity. Recent studies have demonstrated that subgrouping ASD cases based on clinical phenotypes is useful for identifying candidate genes that are dysregulated in ASD subgroups. However, this strategy has not been employed in proteome profiling analyses to identify ASD biomarker proteins for specific subgroups. Methods We therefore conducted a cluster analysis of the Autism Diagnostic Interview-Revised (ADI-R) scores from 85 individuals with ASD to predict subgroups and subsequently identified dysregulated genes by reanalyzing the transcriptome profiles of individuals with ASD and unaffected individuals. Proteome profiling of lymphoblastoid cell lines from these individuals was performed via 2D-gel electrophoresis, and then mass spectrometry. Disrupted proteins were identified and compared to the dysregulated transcripts and reported dysregulated proteins from previous proteome studies. Biological functions were predicted using the 16 Ingenuity Pathway Analysis (IPA) program. Selected proteins were also analyzed by Western blotting. Results The cluster analysis of ADI-R data revealed four ASD subgroups, including ASD with severe language impairment, and transcriptome profiling identified dysregulated genes in each subgroup. Screening via proteome analysis revealed 82 altered proteins in the ASD subgroup with severe language impairment. Eighteen of these proteins were further identified by nano-LC-MS/MS. Among these proteins, fourteen were predicted by IPA to be associated with neurological functions and inflammation. Among these proteins, diazepam-binding inhibitor (DBI) protein was confirmed by Western blot analysis to be expressed at significantly decreased levels in the ASD subgroup with severe language impairment, and the DBI expression levels were correlated with the scores of several ADI-R items. Conclusions By subgrouping individuals with ASD based on clinical phenotypes, and then performing an integrated transcriptome-proteome analysis, we identified DBI as a novel candidate protein for ASD with severe language impairment. The mechanisms of this protein and its potential use as an ASD biomarker warrant further study.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据