4.1 Article

Radicle emergence with increased temperatures following summer dispersal in Trillium camschatcense: A species with deep simple double morphophysiological dormancy in seeds

期刊

PLANT SPECIES BIOLOGY
卷 34, 期 2, 页码 45-52

出版社

WILEY
DOI: 10.1111/1442-1984.12233

关键词

germination; incubator; outdoor; root emergence; shoot emergence; temperatures after seed dispersal

资金

  1. Japanese Ministry of Education, Culture, Sports, Science, and Technology. [26450488]
  2. Grants-in-Aid for Scientific Research [26450488] Funding Source: KAKEN

向作者/读者索取更多资源

Seeds with deep simple double morphophysiological dormancy (MPD) need cold stratification during the first winter after dispersal for radicle emergence, followed by the summer for root and bud development and finally a second winter for shoot emergence. In a previous study, we demonstrated that Trillium camschatcense seeds have this type of dormancy with radicles emerging from most seeds after the first winter. However, radicles also emerged from a few seeds in autumn during the same year as dispersal. We thought that temperatures after seed dispersal played a role in radicle emergence before the first winter. To confirm our idea, we investigated germination phenology outdoors, relationships between temperatures after seed dispersal and radicle emergence in the first year outdoors, radicle emergence in the first winter under varied temperatures using incubators, and shoot emergence from seeds with an emerged radicle in the first year outdoors. Our phenology study confirmed that T. camschatcense seeds have deep simple double MPD. Over 7 years, 0.2-7.5% of radicles emerged in the first year before winter and these percentages were moderately positively correlated with temperatures, especially minimum temperatures. Increasing August and September temperatures increased radicle emergence in the laboratory. Shoots emerged from seeds with an emerged radicle in the first year after the first winter. With increased autumn temperatures in warmer regions or with global warming, we predict that germination phenology may shift: increased radicle emergence in the first year and shoot emergence following the first (and not second) winter.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据