4.8 Article

Quantum Machine Learning in Feature Hilbert Spaces

期刊

PHYSICAL REVIEW LETTERS
卷 122, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.122.040504

关键词

-

向作者/读者索取更多资源

A basic idea of quantum computing is surprisingly similar to that of kernel methods in machine learning, namely, to efficiently perform computations in an intractably large Hilbert space. In this Letter we explore some theoretical foundations of this link and show how it opens up a new avenue for the design of quantum machine learning algorithms. We interpret the process of encoding inputs in a quantum state as a nonlinear feature map that maps data to quantum Hilbert space. A quantum computer can now analyze the input data in this feature space. Based on this link, we discuss two approaches for building a quantum model for classification. In the first approach, the quantum device estimates inner products of quantum states to compute a classically intractable kernel. The kernel can be fed into any classical kernel method such as a support vector machine. In the second approach, we use a variational quantum circuit as a linear model that classifies data explicitly in Hilbert space. We illustrate these ideas with a feature map based on squeezing in a continuous-variable system, and visualize the working principle with two-dimensional minibenchmark datasets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据