4.6 Article

High-efficiency and ultra-broadband asymmetric transmission metasurface based on topologically coding optimization method

期刊

OPTICS EXPRESS
卷 27, 期 3, 页码 2844-2854

出版社

OPTICAL SOC AMER
DOI: 10.1364/OE.27.002844

关键词

-

类别

资金

  1. National Natural Science Foundation of China (NSFC) [61871394, 61701572]
  2. Aeronautical Science Foundation of China (ASFC) [20151896014]

向作者/读者索取更多资源

Achieving asymmetric transmission effects, especially in an ultra-broadband frequency region, is of particular importance in communication systems. Currently available asymmetric transmission metasurfaces are limited to narrow bands and low efficiencies because of the inherently dispersion effects and large transmission fluctuations. In this paper, we propose a new strategy to realize high efficiency and ultra-broadband asymmetric transmission in an ultra-thin profile by using the topologically coding optimization method. The meta-atom consists of two outer orthogonal gratings and a central lattice particle optimized by genetic algorithm. The optimized central lattice suppresses the transmission fluctuations by tuning the coupling among different metallic layers, resulting in very broad band and high transmissions. Experimental results show that our metasurface achieved perfect reflection over 95% and high cross-polarization transmission over 80% for y- and x-polarized incidence from 5.3 GHz to 16.7 GHz, respectively. Our findings pave a way to high-performance and broadband polarization transformers and polarization-controlled devices working in different frequency domains. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据