4.5 Article

Application of Gaussian process regression to plasma turbulent transport model validation via integrated modelling

期刊

NUCLEAR FUSION
卷 59, 期 5, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1741-4326/ab065a

关键词

tokamak; turbulence; model validation; integrated modelling; uncertainty quantification; gaussian processes

资金

  1. Euratom research and training programme [633053]
  2. EPSRC [EP/T012250/1] Funding Source: UKRI

向作者/读者索取更多资源

This paper outlines an approach towards improved rigour in tokamak turbulence transport model validation within integrated modelling. Gaussian process regression (GPR) techniques were applied for profile fitting during the preparation of integrated modelling simulations allowing for rigourous sensitivity tests of prescribed initial and boundary conditions as both fit and derivative uncertainties are provided. This was demonstrated by a JETTO integrated modelling simulation of the JET ITER-like-wall H-mode baseline discharge #92436 with the QuaLiKiz quasilinear turbulent transport model, which is the subject of extrapolation towards a deuterium-tritium plasma. The simulation simultaneously evaluates the time evolution of heat, particle, and momentum fluxes over similar to 10 confinement times, with a simulation boundary condition at rho(tor) = 0.85. Routine inclusion of momentum transport prediction in multi-channel flux-driven transport modelling is not standard and is facilitated here by recent developments within the QuaLiKiz model. Excellent agreement was achieved between the fitted and simulated profiles for n(e), T-e, T-i, and Omega(tor) within 2 sigma, but the simulation underpredicts the mid-radius Ti and overpredicts the core n(e) and T-e profiles for this discharge. Despite this, it was shown that this approach is capable of deriving reasonable inputs, including derivative quantities, to tokamak models from experimental data. Furthermore, multiple figures-of-merit were defined to quantitatively assess the agreement of integrated modelling predictions to experimental data within the GPR profile fitting framework.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据