4.8 Article

Molecularly Imprinted Polymer-Based Plasmonic Immunosandwich Assay for Fast and Ultrasensitive Determination of Trace Glycoproteins in Complex Samples

期刊

ANALYTICAL CHEMISTRY
卷 88, 期 24, 页码 12363-12370

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.6b03597

关键词

-

资金

  1. National Science Fund for Distinguished Young Scholars [21425520]
  2. National Natural Science Foundation of China [21275073]
  3. Ministry of Science and Technology of China [2013CB911202]

向作者/读者索取更多资源

Glycoproteins play significant roles in many biological processes. Assays of glycoproteins have significant biological importance and clinical values, for which immunoassay has been the workhorse tool. However, immunoassay suffers from some disadvantages, such as poor availability of high-specificity antibodies and limited stability of biological reagents. Herein, we present an antibody-free and enzyme-free approach, called molecularly imprinted polymer (MIP)-based plasmonic immunosandwich assay (PISA), for fast and ultrasensitive detection of trace glycoproteins in complex samples. A gold based boronate affinity MIP array was used to specifically extract the target glycoprotein from complex samples. After washing away unwanted species, the captured glycoprotein was labeled with boronate affinity silver-based Raman nanotags. Thus, sandwich-like complexes were formed on the array. Upon being shined with a laser beam, the gold-based array generated a surface plasmon wave, which significantly enhanced the surface-enhanced Raman scattering (SERS) signal of the silver-based Raman nanotags. The MIP ensured the specificity of the assay, while the plasmonic detection provided ultrahigh sensitivity. Erythropoietin (EPO), a glycoprotein hormone that controls erythropoiesis or red blood cell production, was employed as a test glycoprotein in this study. Specific detection of EPO in solution down to 2.9 X 10(-14) M was achieved. Using a novel strategy to accommodate the method of standard addition to a logarithmic dose response relationship, EPO in human urine was quantitatively determined by this approach. The analysis time required only 30 min in total. This approach holds promising application prospects in many areas, such as biochemical research, clinical diagnosis, and antidoping analysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据