4.8 Article

Discrepancy between experimental and theoretical β-decay rates resolved from first principles

期刊

NATURE PHYSICS
卷 15, 期 5, 页码 428-+

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41567-019-0450-7

关键词

-

资金

  1. Lawrence Livermore National Laboratory (LLNL) [DE-AC52-07NA27344]
  2. Office of Nuclear Physics, US Department of Energy [DE-FG02-96ER40963, DE-FG02-97ER41014, DE-SC0008499, DE-SC0018223, DE-SC0015376]
  3. FWP [SCW1579]
  4. LDRD [18-ERD-008, 18-ERD-058]
  5. Lawrence Fellowship Program at LLNL
  6. NSERC [SAPIN-2016-00033]
  7. ERC [307986 STRONGINT]
  8. DFG [SFB 1245]
  9. National Research Council of Canada
  10. Office of Science of the Department of Energy [DE-AC05-00OR22725]
  11. Oak Ridge National Laboratory (ORNL) [ERKBP57, ERKBP72]

向作者/读者索取更多资源

The dominant decay mode of atomic nuclei is beta decay (beta-decay), a process that changes a neutron into a proton (and vice versa). This decay offers a window to physics beyond the standard model, and is at the heart of microphysical processes in stellar explosions and element synthesis in the Universe(1-3). However, observed beta-decay rates in nuclei have been found to be systematically smaller than for free neutrons: this 50-year-old puzzle about the apparent quenching of the fundamental coupling constant by a factor of about 0.75 (ref.(4)) is without a first-principles theoretical explanation. Here, we demonstrate that this quenching arises to a large extent from the coupling of the weak force to two nucleons as well as from strong correlations in the nucleus. We present state-of-the-art computations of beta-decays from light- and medium-mass nuclei to Sn-100 by combining effective field theories of the strong and weak forces(5) with powerful quantum many-body techniques(6-8). Our results are consistent with experimental data and have implications for heavy element synthesis in neutron star mergers(9-11) and predictions for the neutrino-less double-beta-decay(3), where an analogous quenching puzzle is a source of uncertainty in extracting the neutrino mass scale(12).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Review Physics, Nuclear

A next-generation liquid xenon observatory for dark matter and neutrino physics

J. Aalbers, S. S. AbdusSalam, K. Abe, V Aerne, F. Agostini, S. Ahmed Maouloud, D. S. Akerib, D. Y. Akimov, J. Akshat, A. K. Al Musalhi, F. Alder, S. K. Alsum, L. Althueser, C. S. Amarasinghe, F. D. Amaro, A. Ames, T. J. Anderson, B. Andrieu, N. Angelides, E. Angelino, J. Angevaare, V. C. Antochi, D. Anton Martin, B. Antunovic, E. Aprile, H. M. Araujo, J. E. Armstrong, F. Arneodo, M. Arthurs, P. Asadi, S. Baek, X. Bai, D. Bajpai, A. Baker, J. Balajthy, S. Balashov, M. Balzer, A. Bandyopadhyay, J. Bang, E. Barberio, J. W. Bargemann, L. Baudis, D. Bauer, D. Baur, A. Baxter, A. L. Baxter, M. Bazyk, K. Beattie, J. Behrens, N. F. Bell, L. Bellagamba, P. Beltrame, M. Benabderrahmane, E. P. Bernard, G. F. Bertone, P. Bhattacharjee, A. Bhatti, A. Biekert, T. P. Biesiadzinski, A. R. Binau, R. Biondi, Y. Biondi, H. J. Birch, F. Bishara, A. Bismark, C. Blanco, G. M. Blockinger, E. Bodnia, C. Boehm, A. Bolozdynya, P. D. Bolton, S. Bottaro, C. Bourgeois, B. Boxer, P. Bras, A. Breskin, P. A. Breur, C. A. J. Brew, J. Brod, E. Brookes, A. Brown, E. Brown, S. Bruenner, G. Bruno, R. Budnik, T. K. Bui, S. Burdin, S. Buse, J. K. Busenitz, D. Buttazzo, M. Buuck, A. Buzulutskov, R. Cabrita, C. Cai, D. Cai, C. Capelli, J. M. R. Cardoso, M. C. Carmona-Benitez, M. Cascella, R. Catena, S. Chakraborty, C. Chan, S. Chang, A. Chauvin, A. Chawla, H. Chen, V Chepel, N. Chott, D. Cichon, A. Cimental Chavez, B. Cimmino, M. Clark, R. T. Co, A. P. Colijn, J. Conrad, M. Converse, M. Costa, A. Cottle, G. Cox, O. Creaner, J. J. Cuenca Garcia, J. P. Cussonneau, J. E. Cutter, C. E. Dahl, A. David, M. P. Decowski, J. B. Dent, F. F. Deppisch, L. de Viveiros, P. Di Gangi, A. Di Giovanni, S. Di Pede, J. Dierle, S. Diglio, J. E. Y. Dobson, M. Doerenkamp, D. Douillet, G. Drexlin, E. Druszkiewicz, D. Dunsky, K. Eitel, A. Elykov, T. Emken, R. Engel, S. R. Eriksen, M. Fairbairn, A. Fan, J. J. Fan, S. J. Farrell, S. Fayer, N. M. Fearon, A. Ferella, C. Ferrari, A. Fieguth, A. Fieguth, S. Fiorucci, H. Fischer, H. Flaecher, M. Flierman, T. Florek, R. Foot, P. J. Fox, R. Franceschini, E. D. Fraser, C. S. Frenk, S. Frohlich, T. Fruth, W. Fulgione, C. Fuselli, P. Gaemers, R. Gaior, R. J. Gaitskell, M. Galloway, F. Gao, I. Garcia Garcia, J. Genovesi, C. Ghag, S. Ghosh, E. Gibson, W. Gil, D. Giovagnoli, F. Girard, R. Glade-Beucke, F. Glueck, S. Gokhale, A. de Gouvea, L. Graf, L. Grandi, J. Grigat, B. Grinstein, M. G. D. van der Grinten, R. Groessle, H. Guan, M. Guida, R. Gumbsheimer, C. B. Gwilliam, C. R. Hall, L. J. Hall, R. Hammann, K. Han, V Hannen, S. Hansmann-Menzemer, R. Harata, S. P. Hardin, E. Hardy, C. A. Hardy, K. Harigaya, R. Harnik, S. J. Haselschwardt, M. Hernandez, S. A. Hertel, A. Higuera, C. Hils, S. Hochrein, L. Hoetzsch, M. Hoferichter, N. Hood, D. Hooper, M. Horn, J. Howlett, D. Q. Huang, Y. Huang, D. Hunt, M. Iacovacci, G. Iaquaniello, R. Ide, C. M. Ignarra, G. Iloglu, Y. Itow, E. Jacquet, O. Jahangir, J. Jakob, R. S. James, A. Jansen, W. Ji, X. Ji, F. Joerg, J. Johnson, A. Joy, A. C. Kaboth, L. Kalhor, A. C. Kamaha, K. Kanezaki, K. Kar, M. Kara, N. Kato, P. Kavrigin, S. Kazama, A. W. Keaveney, J. Kellerer, D. Khaitan, A. Khazov, G. Khundzakishvili, I Khurana, B. Kilminster, M. Kleifges, P. Ko, M. Kobayashi, D. Kodroff, G. Koltmann, A. Kopec, A. Kopmann, J. Kopp, L. Korley, V. N. Kornoukhov, E. Korolkova, H. Kraus, L. M. Krauss, S. Kravitz, L. Kreczko, V. A. Kudryavtsev, F. Kuger, J. Kumar, B. Lopez Paredes, L. LaCascio, R. Laha, Q. Laine, H. Landsman, R. F. Lang, E. A. Leason, J. Lee, D. S. Leonard, K. T. Lesko, L. Levinson, C. Levy, I Li, S. C. Li, T. Li, S. Liang, C. S. Liebenthal, J. Lin, Q. Lin, S. Lindemann, M. Lindner, A. Lindote, R. Linehan, W. H. Lippincott, X. Liu, K. Liu, J. Liu, J. Loizeau, F. Lombardi, J. Long, M. Lopes, E. Lopez Asamar, W. Lorenzon, C. Lu, S. Luitz, Y. Ma, P. A. N. Machado, C. Macolino, T. Maeda, J. Mahlstedt, P. A. Majewski, A. Manalaysay, A. Mancuso, L. Manenti, A. Manfredini, R. L. Mannino, N. Marangou, J. March-Russell, F. Marignetti, T. Marrodan Undagoitia, K. Martens, R. Martin, I Martinez-Soler, J. Masbou, D. Masson, E. Masson, S. Mastroianni, M. Mastronardi, J. A. Matias-Lopes, M. E. McCarthy, N. McFadden, E. McGinness, D. N. McKinsey, J. McLaughlin, K. McMichael, P. Meinhardt, J. Menendez, Y. Meng, M. Messina, R. Midha, D. Milisavljevic, E. H. Miller, B. Milosevic, S. Milutinovic, S. A. Mitra, K. Miuchi, E. Mizrachi, K. Mizukoshi, A. Molinario, A. Monte, C. M. B. Monteiro, M. E. Monzani, J. S. Moore, K. Mora, J. A. Morad, J. D. Morales Mendoza, S. Moriyama, E. Morrison, E. Morteau, Y. Mosbacher, B. J. Mount, J. Mueller, A. St J. Murphy, M. Murra, D. Naim, S. Nakamura, E. Nash, N. Navaieelavasani, A. Naylor, C. Nedlik, H. N. Nelson, F. Neves, J. L. Newstead, K. Ni, J. A. Nikoleyczik, V Niro, U. G. Oberlack, M. Obradovic, K. Odgers, P. Oikonomou, I Olcina, K. Oliver-Mallory, A. Oranday, J. Orpwood, I Ostrovskiy, K. Ozaki, B. Paetsch, S. Pal, J. Palacio, K. J. Palladino, J. Palmer, P. Panci, M. Pandurovic, A. Parlati, N. Parveen, S. J. Patton, V Pec, Q. Pellegrini, B. Penning, G. Pereira, R. Peres, Y. Perez-Gonzalez, E. Perry, T. Pershing, R. Petrossian-Byrne, J. Pienaar, A. Piepke, G. Pieramico, M. Pierre, M. Piotter, V Pizzella, G. Plante, T. Pollmann, D. Porzio, J. Qi, Y. Qie, J. Qin, F. Quevedo, N. Raj, M. Rajado Silva, K. Ramanathan, D. Ramirez Garcia, J. Ravanis, L. Redard-Jacot, D. Redigolo, S. Reichard, J. Reichenbacher, C. A. Rhyne, A. Richards, Q. Riffard, G. R. C. Rischbieter, A. Rocchetti, S. L. Rosenfeld, R. Rosero, N. Rupp, T. Rushton, S. Saha, P. Salucci, L. Sanchez, P. Sanchez-Lucas, D. Santone, J. M. F. dos Santos, I Sarnoff, G. Sartorelli, A. B. M. R. Sazzad, M. Scheibelhut, R. W. Schnee, M. Schrank, J. Schreiner, P. Schulte, D. Schulte, H. Schulze Eissing, M. Schumann, T. Schwemberger, A. Schwenk, T. Schwetz, L. Scotto Lavina, P. R. Scovell, H. Sekiya, M. Selvi, E. Semenov, F. Semeria, P. Shagin, S. Shaw, S. Shi, E. Shockley, T. A. Shutt, R. Si-Ahmed, J. J. Silk, C. Silva, M. C. Silva, H. Simgen, F. Simkovic, G. Sinev, R. Singh, W. Skulski, J. Smirnov, R. Smith, M. Solmaz, V. N. Solovov, P. Sorensen, J. Soria, T. J. Sparmann, I Stancu, M. Steidl, A. Stevens, K. Stifter, L. E. Strigari, D. Subotic, B. Suerfu, A. M. Suliga, T. J. Sumner, P. Szabo, M. Szydagis, A. Takeda, Y. Takeuchi, P-L Tan, C. Taricco, W. C. Taylor, D. J. Temples, A. Terliuk, P. A. Terman, D. Thers, K. Thieme, T. Thuemmler, D. R. Tiedt, M. Timalsina, W. H. To, F. Toennies, Z. Tong, F. Toschi, D. R. Tovey, J. Tranter, M. Trask, G. C. Trinchero, M. Tripathi, D. R. Tronstad, R. Trotta, Y. D. Tsai, C. D. Tunnell, W. G. Turner, R. Ueno, P. Urquijo, U. Utku, A. Vaitkus, K. Valerius, E. Vassilev, S. Vecchi, V. Velan, S. Vetter, A. C. Vincent, L. Vittorio, G. Volta, B. von Krosigk, M. von Piechowski, D. Vorkapic, C. E. M. Wagner, A. M. Wang, B. Wang, Y. Wang, W. Wang, J. J. Wang, L-T Wang, M. Wang, Y. Wang, J. R. Watson, Y. Wei, C. Weinheimer, E. Weisman, M. Weiss, D. Wenz, S. M. West, T. J. Whitis, M. Williams, M. J. Wilson, D. Winkler, C. Wittweg, J. Wolf, T. Wolf, F. L. H. Wolfs, S. Woodford, D. Woodward, C. J. Wright, V. H. S. Wu, P. Wu, S. Wustling, M. Wurm, Q. Xia, X. Xiang, Y. Xing, J. Xu, Z. Xu, D. Xu, M. Yamashita, R. Yamazaki, H. Yan, L. Yang, Y. Yang, J. Ye, M. Yeh, I Young, H. B. Yu, T. T. Yu, L. Yuan, G. Zavattini, S. Zerbo, Y. Zhang, M. Zhong, N. Zhou, X. Zhou, T. Zhu, Y. Zhu, Y. Zhuang, J. P. Zopounidis, K. Zuber, J. Zupan

Summary: This article discusses how to study dark matter and neutrinos using a dual-phase xenon time-projection chamber, which has extensive sensitivity to various dark matter candidates and can cover a wide range of parameter space. These detectors can also investigate neutrinos through neutrinoless double-beta decay and various astrophysical sources. A next-generation xenon-based detector will serve as a truly multi-purpose observatory to advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology.

JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS (2023)

Article Physics, Multidisciplinary

& beta; plus Gamow-Teller Strengths from Unstable 14O via the (d, 2He) Reaction in Inverse Kinematics

S. Giraud, J. C. Zamora, R. G. T. Zegers, D. Bazin, Y. Ayyad, S. Bacca, S. Beceiro-Novo, B. A. Brown, A. Carls, J. Chen, M. Cortesi, M. DeNudt, G. Hagen, C. Hultquist, C. Maher, W. Mittig, F. Ndayisabye, S. Noji, S. J. Novario, J. Pereira, Z. Rahman, J. Schmitt, M. Serikow, L. J. Sun, J. Surbrook, N. Watwood, T. Wheeler

Summary: For the first time, the (d, 2He) reaction was successfully used in inverse kinematics to extract the Gamow-Teller transition strength in the & beta; thorn direction from an unstable nucleus. The new technique opens a path to addressing a range of scientific challenges, including in astrophysics and neutrino physics. In this study, the nucleus 14O was examined and its Gamow-Teller transition strength to 14N was extracted, providing insights into the quenching phenomenon.

PHYSICAL REVIEW LETTERS (2023)

Article Physics, Multidisciplinary

Microsecond Isomer at the N 20 Island of Shape Inversion Observed at FRIB

T. J. Gray, J. M. Allmond, Z. Xu, T. T. King, R. S. Lubna, H. L. Crawford, V. Tripathi, B. P. Crider, R. Grzywacz, S. N. Liddick, A. O. Macchiavelli, T. Miyagi, A. Poves, A. Andalib, E. Argo, C. Benetti, S. Bhattacharya, C. M. Campbell, M. P. Carpenter, J. Chan, A. Chester, J. Christie, B. R. Clark, I. Cox, A. A. Doetsch, J. Dopfer, J. G. Duarte, P. Fallon, A. Frotscher, T. Gaballah, J. T. Harke, J. Heideman, H. Huegen, J. D. Holt, R. Jain, N. Kitamura, K. Kolos, F. G. Kondev, A. Laminack, B. Longfellow, S. Luitel, M. Madurga, R. Mahajan, M. J. Mogannam, C. Morse, S. Neupane, A. Nowicki, T. H. Ogunbeku, W. -J. Ong, C. Porzio, C. J. Prokop, B. C. Rasco, E. K. Ronning, E. Rubino, T. J. Ruland, K. P. Rykaczewski, L. Schaedig, D. Seweryniak, K. Siegl, M. Singh, A. E. Stuchbery, S. L. Tabor, T. L. Tang, T. Wheeler, J. A. Winger, J. L. Wood

Summary: Excited-state spectroscopy of a 24(2)-μs isomer in 32Na at the FRIB Decay Station initiator (FDSi) was investigated through a cascade of γ rays in coincidence with 32Na nuclei. This is the only known microsecond isomer in the region and sheds light on the coupling and formation of isomers in 32Na, providing insights into the shape degrees of freedom in 32Mg.

PHYSICAL REVIEW LETTERS (2023)

Article Physics, Multidisciplinary

Nuclear Equation of State for Arbitrary Proton Fraction and Temperature Based on Chiral Effective Field Theory and a Gaussian Process Emulator

J. Keller, K. Hebeler, A. Schwenk

Summary: We calculate the equation of state of asymmetric nuclear matter at finite temperature using chiral effective field theory interactions. Our results consider uncertainties from many-body calculation and chiral expansion. By using a Gaussian process emulator, we derive the thermodynamic properties of matter and access arbitrary proton fraction and temperature. Our findings provide the first nonparametric calculation of the equation of state in beta equilibrium and the speed of sound and symmetry energy at finite temperature. Additionally, our results indicate that the thermal part of pressure decreases with increasing densities.

PHYSICAL REVIEW LETTERS (2023)

Article Astronomy & Astrophysics

Two-neutrino ßß decay of 136Xe to the first excited 0+ state in 136Ba

L. Jokiniemi, B. Romeo, C. Brase, J. Kotila, P. Soriano, A. Schwenk, J. Menendez

Summary: We calculate the nuclear matrix element for the two-neutrino beta beta decay of Xe-136 into the first excited 0(+) state of Ba-136 using different many-body methods. Theoretical predictions from the quasiparticle random-phase approximation (QRPA), nuclear shell model, interacting boson model (IBM-2), and effective field theory (EFT) show varying decay rates and half-lives. Cancellations between contributions of intermediate states explain the discrepancies in the predictions.

PHYSICS LETTERS B (2023)

Review Physics, Multidisciplinary

What is ab initio in nuclear theory?

A. Ekstrom, C. Forssen, G. Hagen, G. R. Jansen, W. Jiang, T. Papenbrock

Summary: Ab initio has been used in nuclear theory for over two decades and its meaning has evolved over time. This article provides an interpretation, a historical review, and a discussion on its present-day relation to theoretical uncertainty quantification.

FRONTIERS IN PHYSICS (2023)

Article Astronomy & Astrophysics

Constraints on Strong Phase Transitions in Neutron Stars

T. Gorda, K. Hebeler, A. Kurkela, A. Schwenk, A. Vuorinen

Summary: This study investigates the equation of state (EOS) of dense strongly interacting matter in neutron stars. By making simplifying assumptions and subjecting the EOS to astrophysical constraints, the study finds that a strong first-order phase transition can result in larger radii of neutron stars if it begins below twice nuclear saturation density. The study also identifies unexplored parameter space for phase transitions and a small region allowing twin-star solutions.

ASTROPHYSICAL JOURNAL (2023)

Article Physics, Multidisciplinary

Surprising Charge-Radius Kink in the Sc Isotopes at N=20

Kristian Koenig, Stephan Fritzsche, Gaute Hagen, Jason D. Holt, Andrew Klose, Jeremy Lantis, Yuan Liu, Kei Minamisono, Takayuki Miyagi, Witold Nazarewicz, Thomas Papenbrock, Skyy Pineda, Robert Powel, Paul-Gerhard Reinhard

Summary: The charge radii of neutron deficient 40Sc and 41Sc nuclei were determined using collinear laser spectroscopy. The new data reveals a pronounced kink in the chain of Sc charge radii below the neutron magic number N = 20, which is generally considered as a signature of a shell closure.

PHYSICAL REVIEW LETTERS (2023)

Article Physics, Nuclear

Control optimization for parametric Hamiltonians by pulse reconstruction

Piero Luchi, Francesco Turro, Sofia Quaglioni, Xian Wu, Valentina Amitrano, Kyle Wendt, Jonathan L. Dubois, Francesco Pederiva

Summary: Optimal control techniques are used to generate customized quantum gates, but the computational time required for this approach can be a challenge. To address this issue, we propose a method that reduces computational time by reconstructing control pulses using simple interpolation schemes. We demonstrate the effectiveness of this method in device-level quantum simulations using superconducting qubits.

EUROPEAN PHYSICAL JOURNAL A (2023)

Article Physics, Nuclear

Quantum Monte Carlo calculations in configuration space with three-nucleon forces

Pierre Arthuis, Carlo Barbieri, Francesco Pederiva, Alessandro Roggero

Summary: Neutron matter, which is closely related to neutron stars and systems such as cold atom gases, is an interesting and computationally accessible system in nuclear physics. The configuration-interaction Monte Carlo (CIMC) method is a stochastic many-body technique that allows us to study strongly coupled systems. Unlike other quantum Monte Carlo methods used in nuclear physics, the CIMC method can be formulated directly in momentum space, making it efficient for utilizing nonlocal interactions. In this study, we extend the CIMC method to include three-nucleon interactions using the normal-ordered two-body approximation. We present results for the equation of state of neutron matter that are consistent with other many-body calculations using low-resolution chiral interactions, and also provide predictions for the momentum distribution and the static structure factor.

PHYSICAL REVIEW C (2023)

Article Physics, Nuclear

Normal ordering of three-nucleon interactions for ab initio calculations of heavy nuclei

K. Hebeler, V. Durant, J. Hoppe, M. Heinz, A. Schwenk, J. Simonis, A. Tichai

Summary: Three-nucleon (3N) interactions are essential for accurately solving the nuclear many-body problem, but accurately considering these forces is computationally challenging, so approximate treatments are often used. The method of normal ordering provides a powerful tool for including 3N interactions systematically and efficiently, but traditional frameworks require a large single-particle basis, often leading to truncation of 3N matrix elements. This limitation is overcome by a novel normal-ordering framework performed directly in a Jacobi basis, allowing for calculations of ground-state energies and charge radii of heavy nuclei.

PHYSICAL REVIEW C (2023)

Article Physics, Nuclear

Ab initio no-core shell-model description of 10-14C isotopes

Priyanka Choudhary, Praveen C. Srivastava, Michael Gennari, Petr Navratil

Summary: We conducted a systematic study on the C10-14 isotopes using ab initio no-core shell-model theory, applying four different realistic nucleon-nucleon interactions. We reported the low-lying energy spectra and investigated the level structures of the isotopes. Electromagnetic properties such as transition strengths, quadrupole moments, and magnetic moments were also calculated. The dependence of point-proton radii on harmonic-oscillator frequency and basis space was shown. We also discussed isotopic trends in the density distribution using calculations of the translation invariant one-body density matrix in the no-core shell-model.

PHYSICAL REVIEW C (2023)

Correction Physics, Multidisciplinary

Ab initio predictions link the neutron skin of 208Pb to nuclear forces (vol 18, pg 1196, 2022)

Baishan Hu, Weiguang Jiang, Takayuki Miyagi, Zhonghao Sun, Andreas Ekstroem, Christian Forssen, Gaute Hagen, Jason D. Holt, Thomas Papenbrock, S. Ragnar Stroberg, Ian Vernon

NATURE PHYSICS (2023)

Article Optics

Demonstration of a quantum-classical coprocessing protocol for simulating nuclear reactions

F. Turro, T. Chistolini, A. Hashim, Y. Kim, W. Livingston, J. M. Kreikebaum, K. A. Wendt, J. L. Dubois, F. Pederiva, S. Quaglioni, D. I. Santiago, I. Siddiqi

Summary: Quantum computers have great potential in simulating nuclear dynamical processes. We propose a co-processing algorithm that combines classical processors and quantum hardware to simulate real-time dynamics, overcoming current limitations.

PHYSICAL REVIEW A (2023)

暂无数据