4.1 Article

Cytotoxic and genotoxic effects of environmental relevant concentrations of bisphenol A and interactions with doxorubicin

出版社

ELSEVIER
DOI: 10.1016/j.mrgentox.2018.11.009

关键词

Bisphenol A; Doxorubicin; Cytotoxicity; Genotoxicity; Interactions

资金

  1. COST Action-European Cooperation in Science and Technology, [CA15132 hCOMET]
  2. Environment and Health Research Group (GIAS), Escola Superior de Tecnologia da Satide de Lisboa - Instituto Politecnico de Lisboa

向作者/读者索取更多资源

Bisphenol A (BPA) is one of the most widely utilized endocrine disruptors to which humans are exposed, particularity through ingestion. BPA is an aneugenic compound with a putative association to tumorigenesis. Although extensively studied in estrogen responsive cells, information regarding its effects on cells from the upper gastrointestinal tract exposed to free/active forms of BPA is still scarce. Similarly, BPA interactions with other drugs have been neglected, although it has been suggested to have a potential role in doxorubicin (DOX) chemoresistance. This study is intended to assess potential cytotoxic and genotoxic effects of BPA, as well as its interactions with DOX, in Human epithelial type 2 cells (Hep-2) originated from a human laryngeal carcinoma and in a DNA damage responsive cell line, the human lung fibroblasts (MRC-5). Cell viability was analyzed through the resazurin assay. The G protein-coupled estrogen receptor 1 (GPER) expression was visualized by immunodetection. Genotoxicity, namely DNA damage and oxidative DNA damage, were assessed by comet assay and micronuclei induction, and mitotic disruption was evaluated cytologically by fluorescent microscopy with DAPI staining. Cytotoxicity analysis showed that exposure to BPA per se does not affect cellular viability. Nevertheless, the genotoxic analysis showed that BPA induced an increase of DNA damage in the Hep-2 cell line and in oxidative damage in the MRC-5 cell line. An increase of micronuclei was also observed in both cell lines following BPA exposure. BPA and DOX co-exposures suggested that BPA acts as an antagonist of DOX effects in both cell lines. The interaction with DOX appears to be cell type dependent, exhibiting a non-monotonic response curve in MRC-5 cells, a GPER expressing cell line. Our study emphasizes the need for a deeper knowledge of BPA interactions, particularly with chemotherapeutic agents, in the context of risk assessment and public health.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据