4.4 Article

Application of nanotubes in conveying nanofluid: a bifurcation analysis with consideration of internal energy loss and geometrical imperfection

向作者/读者索取更多资源

This article deals with developing a coupled scale-dependent model to explore the nonlinear bifurcation response of initially imperfect nanotubes conveying nanofluid flow taking into consideration the influences of nonlinear viscoelasticity. Furthermore, the influences of both centrifugal and Coriolis forces are considered. The Beskok-Karniadakis model is employed to capture the influences of slip at the interface between the imperfect viscoelastic nanotube and the nanofluid. A refined combination of nonlocal and strain gradient elasticities is employed for taking into consideration size influences. After formulating the kinetic energy, elastic energy, viscous work and external work, the nonlinear coupled equations are derived for the nanofluid-conveying nanosystem, which simultaneously vibrates along the transverse and longitudinal directions. The nonlinear dynamical characteristics are calculated via utilising a Galerkin procedure and a direct-time-integration technique. It is found that chaotic regions can be removed by imposing a proper geometric imperfection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据