4.7 Article

Rutaecarpine ameliorated sepsis-induced peritoneal resident macrophages apoptosis and inflammation responses

期刊

LIFE SCIENCES
卷 228, 期 -, 页码 11-20

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.lfs.2019.01.038

关键词

Sepsis; Rutaecarpine; Peritoneal resident macrophages; Endoplasmic reticulum stress; Apoptosis; Inflammation

资金

  1. Natural Science Foundation of Hunan Province [2018JJ2609]
  2. National Natural Science Foundation of China [81501710]

向作者/读者索取更多资源

Background: Sepsis is a life-threatening organ dysfunction disease caused by a dysregulated host response to infection. Rutaecarpine is an important alkaloid component of Evodia rutaecarpa. There has been no study on the therapeutic effects of rutaecarpine in sepsis. Methods: Mice were randomly assigned into four groups: sham, sepsis, sepsis plus vehicle and sepsis plus rutaecarpine groups. Mice in sepsis were administered CLP surgery. Rutaecarpine or vehicle was injected intraperitoneally 1 h after CLP. The liver damage, bacterial infection, survival rate and weight loss were observed, and changes in the ratio of peritoneal resident macrophages were analyzed by flow cytometry and immunofluorescence microscopy. Western blotting was used to identify the levels of NF-kappa B signaling pathway, ER stress and apoptosis related proteins. TUNEL and Annexin V/PI assay were used to detect the apoptosis of liver tissues and peritoneal resident macrophages, respectively. ELISA and qRT-PCR were used to detect the inflammatory factors. Results: Rutaecarpine alleviated weight loss, bacterial infection and liver injury, and regulated inflammation homeostasis, enhancing survival rate induced by sepsis. Population of peritoneal resident macrophages (CD11b(+)F4/80 (MHCIIlow)-M-hi)was significantly decreased in sepsis mice, which was resulted from ER stress-induced apoptosis through caspase-12 signaling pathway. Rutaecarpine restored the ratio of peritoneal resident macrophages and the level of GATA6 in CD11b(+) peritoneal macrophages. Rutaecarpine could also attenuate sepsis-induced inflammatory responses through inhibiting the activation of ER stress/NF-kappa B pathway. Conclusion: Rutaecarpine ameliorated sepsis-induced peritoneal resident macrophages apoptosis and inflammation responses through inhibition of ER stress-mediated caspase-12 and NF-kappa B pathways. Our study provided new insights for drug development against sepsis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Medicine, Research & Experimental

Targeting the chromatin remodeling protein BRG1 in liver fibrosis: Mechanism and translational potential

Yuwen Zhu, Yan Guo, Yujia Xue, Anqi Zhou, Ying Chen, Yifei Chen, Xiulian Miao, Fangqiao Lv

Summary: BRG1 plays an important role in HSC-myofibroblast transition and targeting it could be a reasonable strategy for liver fibrosis intervention.

LIFE SCIENCES (2024)

Article Medicine, Research & Experimental

DCLK1 and its oncogenic functions: A promising therapeutic target for cancers

Liu Ye, Beibei Liu, Jingling Huang, Xiaolin Zhao, Yuan Wang, Yungen Xu, Shuping Wang

Summary: Doublecortin-like kinase 1 (DCLK1) is a significant prooncogenic factor that is strongly associated with the malignant progression and clinical prognosis of various cancers. DCLK1 plays important roles in stem cell marker regulation, tumor cell reprogramming, and immune evasion. However, the exact biological functions of DCLK1, especially the disparities between its alpha- and beta-form transcripts in cancer progression, remain ambiguous.

LIFE SCIENCES (2024)

Article Medicine, Research & Experimental

Potential role of bile acids in the pathogenesis of necrotizing enterocolitis

Jiahui Yang, Xiaoyu Chen, Tianjing Liu, Yongyan Shi

Summary: This article reviews the role of bile acids in necrotizing enterocolitis (NEC) and their potential therapeutic value. The dysregulation of bile acids is associated with intestinal injury, and inflammatory factors in the liver also play a crucial role in regulating bile acid transport. The bile acid metabolic pathway is important for regulating intestinal microbiota, cell proliferation, and barrier protection.

LIFE SCIENCES (2024)

Review Medicine, Research & Experimental

Review on chronic metabolic diseases surrounding bile acids and gut microbiota: What we have explored so far

Zhenzheng Zhu, Yuemiao Xu, Yuwei Xia, Xinru Jia, Yixin Chen, Yuyue Liu, Leyin Zhang, Hui Chai, Leitao Sun

Summary: Bile acid, as the final product of cholesterol breakdown, plays a complex regulatory and signaling role in human metabolism. Research suggests that it has the potential to enhance metabolism and regulate chronic metabolic diseases through various pathways. The interaction between bile acid and gut microbiota is also of great significance.

LIFE SCIENCES (2024)

Article Medicine, Research & Experimental

Metabolomics study reveals increased deoxycholic acid contributes to deoxynivalenol-mediated intestinal barrier injury

Xin He, Hong-Xu Zhou, Xian Fu, Kai-Di Ni, Ai-Zhi Lin, Ling-Tong Zhang, Hou-Hua Yin, Qing Jiang, Xue Zhou, Yi-Wen Meng, Jun-Yan Liu

Summary: DON exposure causes an increase in deoxycholic acid (DCA), which contributes to intestinal injury. DCA may be a potential therapeutic target for DON enterotoxicity.

LIFE SCIENCES (2024)

Article Medicine, Research & Experimental

TET1-mediated epigenetic regulation of tumor necrosis factor-α in trigeminal ganglia contributes to chronic temporomandibular joint pain

Zhitao Wang, Heng Ma, Abdul Nasir, Sufang Liu, Zhisong Li, Feng Tao, Qian Bai

Summary: This study reveals the involvement of TET1-mediated epigenetic regulation in chronic TMJ pain through trigeminal TNF alpha signaling.

LIFE SCIENCES (2024)

Article Medicine, Research & Experimental

Targeting HIF-1α alleviates the inflammatory responses and rebuilds the CD4+ T cell subsets balance in the experimental autoimmune myasthenia gravis inflammation model via regulating cellular and humoral immunity

Lu Yu, Hao Ran, Yaru Lu, Qian Ma, Huan Huang, Weibin Liu

Summary: This study found that the HIF-1 alpha inhibitor BAY 87-2243 can alleviate the symptoms of the Experimental Autoimmune Myasthenia Gravis (EAMG) inflammation model. BAY 87-2243 can restore the balance of CD4(+)T cell subsets, reduce the production of pro-inflammatory cytokines, and act as both an immune imbalance regulator and anti-inflammatory.

LIFE SCIENCES (2024)

Article Medicine, Research & Experimental

Evidence for the involvement of TRPV2 channels in the modulation of vascular tone in the mouse aorta

Alex Peralvarez-Marin, Montse Sole, Judith Serrano, Alice Taddeucci, Belen Perez, Clara Penas, Gemma Manich, Marcel Jimenez, Pilar D'Ocon, Francesc Jimenez-Altayo

Summary: This study provides the first evidence that TRPV2 channels may modulate vascular tone by balancing opposing inputs from the endothelium and smooth muscle, leading to net vasodilation. The amplification of TRPV2 channel-induced activity by NO emphasizes the pathophysiological relevance of these findings.

LIFE SCIENCES (2024)

Article Medicine, Research & Experimental

Involvement of CXC chemokines (CXCL1-CXCL17) in gastric cancer: Prognosis and therapeutic molecules

Amin Ullah, Jing Zhao, Jiakun Li, Rajeev K. Singla, Bairong Shen

Summary: Gastric cancer is the fifth-most prevalent and second-most deadly cancer worldwide. Late onset of symptoms makes early detection important. CXC chemokines play an important role in the pathological process of gastric cancer, but their exact role in diagnosis and prognosis is not fully understood. Inhibiting CXC chemokines shows promise as a targeted therapy.

LIFE SCIENCES (2024)

Article Medicine, Research & Experimental

Trigonelline mitigates bleomycin-induced pulmonary inflammation and fibrosis: Insight into NLRP3 inflammasome and SPHK1/S1P/Hippo signaling modulation

Menna S. Zeyada, Salma M. Eraky, Mamdouh M. El-Shishtawy

Summary: The current study demonstrates the prophylactic and antifibrotic effects of Trig against BLM-induced PF by targeting multiple signaling pathways. The combination of Trig and Pirf may be a promising approach to enhance Pirf's anti-fibrotic effect.

LIFE SCIENCES (2024)