4.7 Article

Towards acoustic metafoams: The enhanced performance of a poroelastic material with local resonators

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmps.2018.10.006

关键词

Acoustic metamaterials; Poroelastic materials; Local resonance; Viscothermal dissipation; Acoustic foams; Metafoams

资金

  1. European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) ERC [339392]
  2. European Research Council (ERC) [339392] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

Acoustic foams are commonly used for sound attenuation purposes. Due to their porous microstructure, they efficiently dissipate energy through the air flowing in and out of the pores at high frequencies. However, the low frequency performance is still challenging for foams, even after optimisation of their microstructural design. A new, innovative, approach is therefore needed to further improve the acoustic behaviour of poroelastic materials. The expanding field of locally resonant acoustic metamaterials shows some promising examples where resonating masses incorporated within the microstructure lead to a significant enhancement of low frequency wave attenuation. In this paper, a combination of traditional poroelastic materials with locally resonant units embedded inside the pores is proposed, showing the pathway towards designing acoustic metafoams: poroelastic materials with properties beyond standard foams. The conceptual microstructural design of an idealised unit cell presented in this work consists of a cubic pore representing a foam unit cell with an embedded micro-resonator and filled with a viscothermal fluid (air). Analysis of complex dispersion diagrams and numerical transmission simulations demonstrate a clear improvement in wave attenuation achieved by such a microstructure. It is believed that this demonstrates the concept, which serves the future development of novel poroelastic materials. (C) 2018 The Authors. Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据