4.7 Article

Stress rupture properties and deformation mechanisms of K4750 alloy at the range of 650 °C to 800 °C

期刊

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
卷 35, 期 7, 页码 1270-1277

出版社

JOURNAL MATER SCI TECHNOL
DOI: 10.1016/j.jmst.2019.03.002

关键词

Nickel based superalloy; Stress rupture properties; Dislocation; Deformation mechanisms; Transmission electron microscopy

向作者/读者索取更多资源

The stress rupture properties and deformation mechanisms of K4750 alloy at 650 degrees C, 700 degrees C, 750 degrees C and 800 degrees C were investigated. As the decrease of temperature and stress, the stress rupture life gradually increased. A Larson-Miller Parameter (LMP) method was used for analyzing the stress rupture life under different conditions. The linear fitting formula between stress (sigma) and LMP was derived as sigma = 3166.455 - 119.969 x LMP and the fitting coefficient was 0.98. After testing, the dislocation configurations of all stress rupture samples were investigated by transmission electron microscopy (TEM). The temperature and stress had a significant impact on the deformation mechanism, thereby affected the stress rupture life of K4750 alloy. As the increasing stress at a given temperature, the deformation mechanism gradually transformed from Orowan looping to stacking fault shearing. Based on experimental results, the threshold stress at 650 degrees C, 700 degrees C, 750 degrees C and 800 degrees C for the transition of deformation mechanism was estimated to be about 650 MPa, 530 MPa, 430 MPa and 350 MPa, respectively. Below the threshold stress, gamma' phase effectively hindered dislocation motion by Orowan looping mechanism, K4750 alloy had a long stress rupture life. Slightly above the threshold stress, Orowan looping combining stacking fault shearing was the dominant mechanism, the stress rupture life decreased. As the further increase of stress, stacking fault shearing acted as the dominant deformation mechanism, the resistance to dislocation motion decreased rapidly, so the stress rupture life reduced significantly. (C) 2019 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据