4.7 Article

Structural and electronic properties of Fe dopants in cobalt oxide nanoislands on Au(111)

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 150, 期 4, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.5052336

关键词

-

资金

  1. Canadian Institute for Advanced Research (CIFAR)
  2. China Scholarship Council (CSC)
  3. Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]
  4. Extreme Science and Engineering Discovery Environment (XSEDE)
  5. National Science Foundation Energy [CHE160084]

向作者/读者索取更多资源

Mixed metal oxides of earth-abundant 3d transition metals are an interesting class of materials that show interesting magnetic properties and a significant synergistic effect as catalysts for electrochemical oxygen evolution compared to simple unary oxides. However, the exact atomic-scale nature of such mixed oxide phases and the link to their interesting physico-chemical properties are poorly understood. Here, a combination of scanning tunneling microscopy and x-ray photoemission spectroscopy reveals that Fe species embed in a facile way into CoO bilayers on Au(111) resulting in an Fe doped oxide. Density functional theory and the spectroscopic fingerprint from x-ray photoemission spectroscopy reveal that the Fe dopants in the cobalt oxide matrix assume a higher oxidation state than in the structurally corresponding unary bilayer oxide. Furthermore, the substituted Fe is structurally displaced further away from the Au than the metal in either of the corresponding pure unary oxides. Both O and to a smaller extent Co in the nearest coordination shell are also structurally and electronically perturbed. The interesting effects observed in the bilayer binary oxides may enable a better fundamental understanding of the nature of doping of metal oxides, in general, and promotion effects in catalytic applications. Published under license by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据