4.6 Article

The plant triterpenoid celastrol blocks PINK1-dependent mitophagy by disrupting PINK1's association with the mitochondrial protein TOM20

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 294, 期 18, 页码 7472-7487

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.RA118.006506

关键词

parkin; PTEN-induced putative kinase 1 (PINK1); mitophagy; mitochondria; chemical biology; celastrol; gamitrinib; plant terpenoid; TOM20; TOM70

资金

  1. NIGMS, National Institutes of Health [R01GM113141, T32GM08759]
  2. NCI, National Institutes of Health [R01CA107098]
  3. National Institutes of Health [S10 RR026680, S10OD021601]

向作者/读者索取更多资源

A critical function of the PTEN-induced kinase 1 (PINK1)-Parkin pathway is to mediate the clearing of unhealthy or damaged mitochondria via mitophagy. Loss of either PINK1 or Parkin protein expression is associated with Parkinson's disease. Here, using a high-throughput screening approach along with recombinant protein expression and kinase, immunoblotting, and immunofluorescence live-cell imaging assays, we report that celastrol, a pentacyclic triterpenoid isolated from extracts of the medicinal plant Tripterygium wilfordii, blocks recruitment pof Parkin to mitochondria, preventing mitophagy in response to mitochondrial depolarization induced by carbonyl cyanide m-chlorophenylhydrazone or to gamitrinib-induced inhibition of mitochondrial heat shock protein 90 (HSP90). Celastrol's effect on mitophagy was independent of its known role in microtubule disruption. Instead, we show that celastrol suppresses Parkin recruitment by inactivating PINK1 and preventing it from phosphorylating Parkin and also ubiquitin. We also observed that PINK1 directly and strongly associates with TOM20, a component of the translocase of outer mitochondrial membrane (TOM) machinery and relatively weak binding to another TOM subunit, TOM70. Moreover, celastrol disrupted binding between PINK1 and TOM20 both in vitro and in vivo but did not affect binding between TOM20 and TOM70. Using native gel analysis, we also show that celastrol disrupts PINK1 complex formation upon mitochondrial depolarization and sequesters PINK1 to high-molecular-weight protein aggregates. These results reveal that celastrol regulates the mitochondrial quality control pathway by interfering with PINK1-TOM20 binding.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据