4.6 Article

Strain-driven thermodynamic stability and electronic transitions in ZnX (X = O, S, Se, and Te) monolayers

期刊

JOURNAL OF APPLIED PHYSICS
卷 125, 期 8, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.5053680

关键词

-

资金

  1. Department of Science and Technology, Government of India

向作者/读者索取更多资源

Semiconducting Zn chalcogenide monolayers are important members of the 2D family of materials due to their unique electronic properties. In this paper, we focus on strain-modulated electronic properties of monolayers of ZnX, with X being O, S, Se, and Te. ZnO and ZnS monolayers have a hexagonal graphene-like planar structure, while ZnSe and ZnTe monolayers exhibit slightly buckled silicene and germanene-like structures, respectively. Density functional theory calculations find the hexagonal ZnO monolayer to be dynamically stable. However, ZnS, ZnSe, and ZnTe monolayers are predicted to be less stable with small imaginary frequencies. The application of tensile strain to these monolayers, interestingly, yields stability of dynamically less stable structures together with the modification in the nature of the bandgap from direct to indirect. For a tensile strain of about 8%, a closure of the bandgap in ZnTe is predicted with the semiconductor-metal transition. The results, therefore, find strain-induced stability and modification in electronic properties of monolayers of Zn chalcogenides, suggesting the use of these monolayers for novel device applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据