4.5 Article

Fractional calculus derivation of a rate-dependent PPR-based cohesive fracture model: theory, implementation, and numerical results

期刊

INTERNATIONAL JOURNAL OF FRACTURE
卷 216, 期 1, 页码 1-29

出版社

SPRINGER
DOI: 10.1007/s10704-018-00334-w

关键词

PPR cohesive zone model; Fractional viscoelasticity; Fractional calculus; Fractional differential equations; Rate-dependent fracture; Damage mechanics; Fracture mechanics

资金

  1. Raymond Allen Jones Chair at the Georgia Institute of Technology

向作者/读者索取更多资源

Rate-dependent fracture has been extensively studied using cohesive zone models (CZMs). Some of them use classical viscoelastic material models based on springs and dashpots. However, such viscoelastic models, characterized by relaxation functions with exponential decay, are inadequate to simulate fracture for a wide range of loading rates. To improve the accuracy of existing models, this work presents a mixed-mode rate-dependent CZM that combines the features of the Park-Paulino-Roesler (PPR) cohesive model and a fractional viscoelastic model. This type of viscoelastic model uses differential operators of non-integer order, leading to power-law-type relaxation functions with algebraic decay. We derive the model in the context of damage mechanics, such that undamaged viscoelastic tractions obtained from a fractional viscoelastic model are scaled using two damage parameters. We obtain these parameters from the PPR cohesive model and enforce them to increase monotonically during the entire loading history, which avoids artificial self-healing. We present three examples, two used for validation purposes and one to elucidate the physical meaning of the fractional differential operators. We show that the model is able to predict rate-dependent fracture process of rubber-like materials for a wide range of loading rates and that it can capture rate-dependent mixed-mode fracture processes accurately. Results from the last example indicate that the order of the fractional differential operators acts as a memory-like parameter that allows for the fracture modeling of long- and short-term memory processes. The ability of fractional viscoelastic models to model this type of process suggests that relaxation functions with algebraic decay lead to accurate fracture modeling of materials for a wide range of loading rates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据