4.5 Article

A Scalable Near-Memory Architecture for Training Deep Neural Networks on Large In-Memory Datasets

期刊

IEEE TRANSACTIONS ON COMPUTERS
卷 68, 期 4, 页码 484-497

出版社

IEEE COMPUTER SOC
DOI: 10.1109/TC.2018.2876312

关键词

Parallel architectures; memory structures; memory hierarchy; machine learning; neural nets

资金

  1. Microsoft Research
  2. MRL [2017-044]
  3. European Union [732631]

向作者/读者索取更多资源

Most investigations into near-memory hardware accelerators for deep neural networks have primarily focused on inference, while the potential of accelerating training has received relatively little attention so far. Based on an in-depth analysis of the key computational patterns in state-of-the-art gradient-based training methods, we propose an efficient near-memory acceleration engine called NTX that can be used to train state-of-the-art deep convolutional neural networks at scale. Our main contributions are: (i) a loose coupling of RISC-V cores and NTX co-processors reducing offloading overhead by 7 x over previously published results; (ii) an optimized IEEE 754 compliant data path for fast high-precision convolutions and gradient propagation; (iii) evaluation of near-memory computing with NTX embedded into residual area on the Logic Base die of a Hybrid Memory Cube; and (iv) a scaling analysis to meshes of HMCs in a data center scenario. We demonstrate a 2.7 x energy efficiency improvement of NTX over contemporary GPUs at 4.4 x less silicon area, and a compute performance of 1.2 Tflop/s for training large state-of-the-art networks with full floating-point precision. At the data center scale, a mesh of NTX achieves above 95 percent parallel and energy efficiency, while providing 2.1 x energy savings or 3.1 x performance improvement over a GPU-based system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据