4.5 Article

Annual and diurnal water vapor cycles at Curiosity from observations and column modeling

期刊

ICARUS
卷 319, 期 -, 页码 485-490

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.icarus.2018.10.008

关键词

Mars, climate; Mars, surface; Meteorology

资金

  1. Academy of Finland [131723, 132825, 310509]
  2. Academy of Finland (AKA) [310509, 132825, 131723, 310509, 131723, 132825] Funding Source: Academy of Finland (AKA)

向作者/读者索取更多资源

Local column precipitable water contents (PWC) for more than a martian year from 113 Curiosity ChemCam passive-mode sky scans were used to force a column model with subsurface adsorption. ChemCam volume mixing ratios (vmr) and T, RH and vmr from REMS-H were compared with model results. The REMS-H observations point to decrease of vmr (i.e. depletion of near-surface water vapor) during every evening and night throughout the year. The model's pre-dawn results are quite similar to the REMS-H observations, if adsorption is allowed. The indicated porosity is about 30% and the night depletion ratio about 0.25. If adsorption is not allowed, RH and vmr become excessive during every night at all seasons, leading to ground frost between Ls 82 degrees-146 degrees; frost has not been observed. As brine formation is unlikely along the Curiosity track, adsorption thus appears to be the depleting process. During daytime the ChemCam vmr is in general close to surface values from the Mars Climate Database (MCD) vmr profiles for the Curiosity site when those profiles are scaled to match the ChemCam PWC. Our simulated daytime surface-vmr is in turn close to the ChemCam vmr when moisture is assumed well-mixed to high altitudes, whereas a low moist layer (15 km) leads to overestimates, which are worse during the warm season. Increased TES-like regional PWC also leads to large overestimates of daytime surface-vmr. Hence the crater appears to be drier than the region surrounding Gale and the results support a seasonally varying vertical distribution of moisture with a dry lower atmosphere (by Hadley circulation), as suggested by MCD and other GCM experiments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据