4.7 Article

LNG cold energy utilization: Prospects and challenges

期刊

ENERGY
卷 170, 期 -, 页码 557-568

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2018.12.170

关键词

LNG; Cold energy utilization; Power generation; Desalination; Direct cooling; Air conditioning

资金

  1. China University of Petroleum (East China), China [05Y18150010]
  2. Singapore MOE Academic Research Fund (AcRF) Tier 1 [R-279-000-542-114]
  3. Energy Innovation Research Programme (EIRP) [NRF2014EW- TEIRP003-006]

向作者/读者索取更多资源

Liquefied natural gas (LNG) is widely used in many countries around the world primarily as a mode of transport for natural gas. However, massive amount of energy (around 830 kJ/kg of LNG) is wasted during the regasification process in the LNG regasification terminals. Therefore, the technologies to utilize the LNG cold energy have received significant attention over recent decades. In this paper, we review various studies on the current LNG cold energy utilization systems, including power generation, air separation, desalination, cryogenic carbon dioxide capture, and NGL recovery. Utilizing LNG cold energy on such systems can improve the energetic and exergetic efficiencies significantly. Furthermore, several potential applications to utilize LNG cold energy in the future are proposed and discussed to broaden the perspectives of the researchers in the community. Among these potential applications, recovering LNG cold energy on cold chain for food transportation, data center cooling and hydrate based desalination are very promising. Finally, the limitations and challenges to be addressed for LNG cold energy utilization are discussed in detail. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Engineering, Chemical

Historical perspectives on gas hydrates and citation impact analysis

Praveen Linga

Summary: This article presents a bibliometric analysis of the field of gas hydrates or clathrate hydrates from 1901 to 2020. The analysis includes the top countries, cited review articles, original research articles, source titles, field classifications, citation rate trends, and co-occurrence of keywords. Network visualization maps were created to analyze the citations and identify the relationships between countries, sources, and organizations.

CANADIAN JOURNAL OF CHEMICAL ENGINEERING (2023)

Article Thermodynamics

Technoeconomic and environmental optimization of combined heat and power systems with renewable integration for chemical plants

Zuming Liu, Arijit Chakraborty, Tianbiao He, Iftekhar A. Karimi

Summary: The chemical industry relies heavily on fossil fuels, resulting in significant carbon emissions. Implementing combined heat and power (CHP) systems can effectively reduce both energy consumption and carbon emissions. This study presents a bi-objective optimization framework for CHP systems in chemical plants, considering steam turbine network design and renewable integration. The results demonstrate the trade-off between total annual cost and carbon emissions, showing the potential for emissions reduction through CHP systems.

APPLIED THERMAL ENGINEERING (2023)

Article Engineering, Environmental

Roles of amino acid hydrophobicity on methane-THF hydrates in the context of storage and stability

Kan Jeenmuang, Phuwadej Pornaroontham, Katipot Inkong, Gaurav Bhattacharjee, Santi Kulprathipanja, Praveen Linga, Pramoch Rangsunvigit

Summary: This study reveals that using amino acids as kinetic promoters can enhance the formation of mixed methane-THF hydrates at room temperature and pressure, with hydrophobic amino acids showing the most significant effect.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Thermodynamics

Semi-clathrate hydrate slurry as a cold energy storage and transport medium: Rheological study, energy analysis and enhancement by amino acid

Hyunho Kim, Junjie Zheng, Zhenyuan Yin, Ponnivalavan Babu, Sreekala Kumar, Jackson Tee, Praveen Linga

Summary: The rheology of TBAB semi-clathrate hydrate slurry (SHS) was studied, and the discrepancy in the literature was clarified. TBAB SHS exhibited non-Newtonian shear-thinning behavior, with its apparent viscosity increasing exponentially with the increase of hydrate fraction. Type B TBAB SHS was recommended due to its lower apparent viscosity. Additionally, the environmentally benign additive L-tryptophan was found to significantly decrease the apparent viscosity of TBAB SHS and reduce pumping power consumption in cooling applications by 68.7%.

ENERGY (2023)

Article Chemistry, Multidisciplinary

Investigation on the Amino Acid-Assisted CO2 Hydrates: A Promising Step Toward Hydrate-based Decarbonization

Viphada Yodpetch, Katipot Inkong, Hari Prakash Veluswamy, Santi Kulprathipanja, Pramoch Rangsunvigit, Praveen Linga

Summary: Carbon capture and storage (CCS) is a promising method for reducing carbon dioxide (CO2) emissions from fossil fuels. Amino acids, such as leucine, methionine, and valine, were used as promoters in CO2 hydrate formation. Different concentrations of amino acids had varying effects on the rate of hydrate formation. The use of amino acids with the hybrid combinatorial reactor (HCR) approach shows promise for CCS applications.

ACS SUSTAINABLE CHEMISTRY & ENGINEERING (2023)

Article Energy & Fuels

Roles of montmorillonite clay on the kinetics and morphology of CO2 hydrate in hydrate-based CO2 sequestration

Junjie Ren, Siyu Zeng, Daoyi Chen, Mingjun Yang, Praveen Linga, Zhenyuan Yin

Summary: This study investigates the role of clay minerals in CO2 hydrate formation and dissociation in clay-rich sediments. It is found that the presence of sodium montmorillonite (Na-MMT) clay significantly reduces the induction time and growth rate of CO2 hydrate due to additional nucleation sites and induced surface electric field. The high viscosity of the suspension and the clay-induced strongly-polarized water layer impede the mass transfer of CO2, thereby retarding the overall kinetics of CO2 hydrate formation.

APPLIED ENERGY (2023)

Article Energy & Fuels

Investigating High-Pressure Liquid CO2 Hydrate Formation, Dissociation Kinetics, and Morphology in Brine and Freshwater Static Systems

Vikas Dhamu, M. Fahed Qureshi, Saifudin Abubakar, Adam Usadi, Timothy A. Barckholtz, Ashish B. Mhadeshwar, Praveen Linga

Summary: Carbon capture and storage [CCS] is essential for reducing CO2 emissions, and one potential CCS concept is compressing and storing captured CO2 as gas hydrates in deep oceanic sediments. However, the high salinity of seawater may affect the formation and storage of CO2 hydrates. Therefore, it is crucial to understand the kinetics of liquid CO2 hydrate formation and dissociation in static brine systems.

ENERGY & FUELS (2023)

Article Energy & Fuels

Methane Storage in Simulated Seawater Enabled by 1,3-Dioxane as an Environmentally Benign Promoter

Ye Zhang, Huanzhi Xu, Gaurav Bhattacharjee, Praveen Linga

Summary: With the increasing demand for natural gas in the current century, solidified natural gas technology is expected to play a vital role in enhancing energy resilience and ensuring sufficient energy supply globally. In this study, dioxane was used as an environmentally friendly additive and a dual-function promoter for hydrate formation in simulated seawater, addressing the issues of water scarcity and the use of toxic chemicals, and potentially increasing methane storage capacity.

ENERGY & FUELS (2023)

Article Engineering, Chemical

Thermodynamics, Kinetics, Morphology, and Raman studies for sH Hydrate of Methane and Cyclooctane

Namrata Gaikwad, Hyunho Kim, Gaurav Bhattacharjee, Jitendra S. Sangwai, Rajnish Kumar, Praveen Linga

Summary: This study experimentally investigated the formation of sH hydrate with methane and cyclooctane for possible applications in gas storage. The study found that the slow kinetics of sH hydrate formation can be improved by using low tryptophan concentrations. Raman analysis confirmed the presence of methane and cyclooctane in the sH hydrate cages.

ACS ENGINEERING AU (2023)

Article Energy & Fuels

Effect of clay on methane hydrate formation and dissociation in sediment: Implications for energy recovery from clayey-sandy hydrate reservoirs*

Zheng Liu, Junjie Zheng, Zhiyuan Wang, Yonghai Gao, Baojiang Sun, Youqiang Liao, Praveen Linga

Summary: Natural gas hydrate (NGH) is an unconventional energy source with high energy density, huge reserves, and worldwide distribution. Sand-dominated hydrate-bearing sediments (HBS) are the most feasible category for exploitation, however, the presence of clay hinders the formation kinetics of the hydrates, making it challenging to study fluid production behavior. This study synthesized clayey-sandy HBS samples using a new method and observed that the presence of clay led to slower hydrate decomposition and a significant difference in fluid production behavior compared to sandy HBS. The findings call for further investigations and development of specific production strategies for clay-containing HBS.

APPLIED ENERGY (2023)

Article Engineering, Environmental

Coupling amino acid L-Val with THF for superior hydrogen hydrate kinetics: Implication for hydrate-based hydrogen storage

Jibao Zhang, Yan Li, Zhenyuan Yin, Praveen Linga, Tianbiao He, Xiangyuan Zheng

Summary: This study introduces an environmentally friendly kinetic promoter (L-valine) and couples it with a thermodynamic promoter (THF) to enhance the kinetics of H2 hydrate formation. The optimal enhancement is achieved using 0.3 wt% L-Val coupled with 5.56 mol% THF, resulting in a maximum volumetric H2 uptake of 29.83 +/- 1.22 v/v. The results provide insights into accelerating H2 uptake in solid-hydrate form and have potential applications in hydrate-based hydrogen storage.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Thermodynamics

Kinetic evaluation of hydrate-based coalbed methane recovery process promoted by structure II thermodynamic promoters and amino acids

Qiang Zhang, Junjie Zheng, Baoyong Zhang, Praveen Linga

Summary: Coalbed methane recovery is crucial for coal mine safety, reducing greenhouse gas emissions, and economic benefits. Gas hydrate technology can effectively separate CH4 from N2-rich coal mine gas. The synergistic effect of sII hydrate promoters and amino acids was examined for enhancing hydrate formation kinetics, separation performance, and CH4 recovery. Amino acids showed significant promotion effects, particularly for the propane system, and improved kinetics by over 10 times. CP-amino acid systems demonstrated excellent separation performance, increasing CH4 content from 30% to 70%. THF-amino acid systems achieved the highest CH4 recovery of up to 50.27%. The impact of amino acids varied depending on the system, and two possible mechanisms, including interfacial tension alteration and amino acid hydrophobicity, were discussed. These insights provide a basis for optimizing the hydrate process for coalbed methane recovery and other applications.

ENERGY (2023)

Article Engineering, Environmental

Evaluation of amino acid L-leucine as a kinetic promoter for CO2 sequestration as hydrate: A kinetic and morphological study

Yan Li, Zhenyuan Yin, Hongfeng Lu, Chenlu Xu, Xuejian Liu, Hailin Huang, Daoyi Chen, Praveen Linga

Summary: Carbon capture and sequestration (CCS) is widely recognized as the most effective technology for reducing CO2 emissions and mitigating global climate change. Hydrate-based CO2 sequestration (HBCS) has emerged as a promising technology, and there is growing interest in using hydrophobic amino acids to enhance CO2 hydrate formation kinetics.

JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING (2023)

Article Thermodynamics

Experimental investigation of a dual-pontoon WEC-type breakwater with a hydraulic-pneumatic complementary power take-off system

Yong Cheng, Fukai Song, Lei Fu, Saishuai Dai, Zhiming Yuan, Atilla Incecik

Summary: This paper investigates the accessibility of wave energy absorption by a dual-pontoon floating breakwater integrated with hybrid-type wave energy converters (WECs) and proposes a hydraulic-pneumatic complementary energy extraction method. The performance of the system is validated through experiments and comparative analysis.

ENERGY (2024)

Article Thermodynamics

Site selection decision for biomass cogeneration projects from a sustainable perspective: A case study of China

Jing Gao, Chao Wang, Zhanwu Wang, Jin Lin, Runkai Zhang, Xin Wu, Guangyin Xu, Zhenfeng Wang

Summary: This study aims to establish a new integrated method for biomass cogeneration project site selection, with a focus on the application of the model in Henan Province. By integrating Geographic Information System and Multiple Criterion Decision Making methods, the study conducts site selection in two stages, providing a theoretical reference for the construction of biomass cogeneration projects.

ENERGY (2024)

Article Thermodynamics

Development of a hybridized small modular reactor and solar-based energy system for useful commodities required for sustainable cities

Mert Temiz, Ibrahim Dincer

Summary: The current study presents a hybrid small modular nuclear reactor and solar-based system for sustainable communities, integrating floating and bifacial photovoltaic arrays with a small modular reactor. The system efficiently generates power, hydrogen, ammonia, freshwater, and heat for residential, agricultural, and aquaculture facilities. Thermodynamic analysis shows high energy and exergy efficiencies, as well as large-scale ammonia production meeting the needs of metropolitan areas. The hybridization of nuclear and solar technologies offers advantages of reliability, environmental friendliness, and cost efficiency compared to renewable-alone and fossil-based systems.

ENERGY (2024)

Editorial Material Thermodynamics

ENERGY special issue devoted to the 7th international conference CPOTE2022

Wojciech Stanek, Wojciech Adamczyk

ENERGY (2024)

Article Thermodynamics

Investigating the influence of outdoor temperature variations on fire-induced smoke behavior in an atrium-type underground metro station using hybrid ventilation systems

Desheng Xu, Yanfeng Li, Tianmei Du, Hua Zhong, Youbo Huang, Lei Li, Xiangling Duanmu

Summary: This study investigates the optimization of hybrid mechanical-natural ventilation for smoke control in complex metro stations. The results show that atrium fires are more significantly impacted by outdoor temperature variations compared to concourse/platform fires. The gathered high-temperature smoke inside the atrium can reach up to 900 K under a 5 MW train fire energy release. The findings provide crucial engineering insights into integrating weather data and adaptable ventilation protocols for smoke prevention/mitigation.

ENERGY (2024)

Article Thermodynamics

In-situ pressure-preserved coring for deep oil and gas exploration: Design scheme for a coring tool and research on the in-situ pressure-preserving mechanism

Da Guo, Heping Xie, Mingzhong Gao, Jianan Li, Zhiqiang He, Ling Chen, Cong Li, Le Zhao, Dingming Wang, Yiwei Zhang, Xin Fang, Guikang Liu, Zhongya Zhou, Lin Dai

Summary: This study proposes a new in-situ pressure-preserved coring tool and elaborates its pressure-preserving mechanism. The experimental and field test results demonstrate that this tool has a high pressure-preservation capability and can maintain a stable pressure in deep wells. This study provides a theoretical framework and design standards for the development of similar technologies.

ENERGY (2024)

Article Thermodynamics

How coal de-capacity policy affects renewable energy development efficiency? Evidence from China

Aolin Lai, Qunwei Wang

Summary: This study assesses the impact of China's de-capacity policy on renewable energy development efficiency (REDE) using the Global-MSBM model and the difference-in-differences method. The findings indicate that the policy significantly enhances REDE, promoting technological advancements and marketization. Moreover, regions with stricter environmental regulations experience a higher impact.

ENERGY (2024)

Article Thermodynamics

Performance improvement of microbial fuel cell using experimental investigation and fuzzy modelling

Mostafa Ghasemi, Hegazy Rezk

Summary: This study utilizes fuzzy modeling and optimization to enhance the performance of microbial fuel cells (MFCs). By simulating and analyzing experimental data sets, the ideal parameter values for increasing power density, COD elimination, and coulombic efficiency were determined. The results demonstrate that the fuzzy model and optimization methods can significantly improve the performance of MFCs.

ENERGY (2024)

Article Thermodynamics

A novel prediction method of fuel consumption for wing-diesel hybrid vessels based on feature construction

Zhang Ruan, Lianzhong Huang, Kai Wang, Ranqi Ma, Zhongyi Wang, Rui Zhang, Haoyang Zhao, Cong Wang

Summary: This paper proposes a grey box model for fuel consumption prediction of wing-diesel hybrid vessels based on feature construction. By using both parallel and series grey box modeling methods and six machine learning algorithms, twelve combinations of prediction models are established. A feature construction method based on the aerodynamic performance of the wing and the energy relationship of the hybrid system is introduced. The best combination is obtained by considering the root mean square error, and it shows improved accuracy compared to the white box model. The proposed grey box model can accurately predict the daily fuel consumption of wing-diesel hybrid vessels, contributing to operational optimization and the greenization and decarbonization of the shipping industry.

ENERGY (2024)

Article Thermodynamics

Off-farm employment and household clean energy transition in rural China: A study based on a gender perspective

Huayi Chang, Nico Heerink, Junbiao Zhang, Ke He

Summary: This study examines the interaction between off-farm employment decisions between couples and household clean energy consumption in rural China, and finds that two-paycheck households are more likely to consume clean energy. The off-farm employment of women is a key factor driving household clean energy consumption to a higher level, with wage-employed wives having a stronger influence on these decisions than self-employed ones.

ENERGY (2024)

Article Thermodynamics

A novel approach for identifying customer groups for personalized demand-side management services using household socio-demographic data

Hanguan Wen, Xiufeng Liu, Ming Yang, Bo Lei, Xu Cheng, Zhe Chen

Summary: Demand-side management is crucial to smart energy systems. This paper proposes a data-driven approach to understand the relationship between energy consumption patterns and household characteristics for better DSM services. The proposed method uses a clustering algorithm to generate optimal customer groups for DSM and a deep learning model for training. The model can predict the possibility of DSM membership for a given household. The results demonstrate the usefulness of weekly energy consumption data and household socio-demographic information for distinguishing consumer groups and the potential for targeted DSM strategies.

ENERGY (2024)

Article Thermodynamics

Study on the heat recovery behavior of horizontal well systems in the Qiabuqia geothermal area of the Gonghe Basin, China

Xinglan Hou, Xiuping Zhong, Shuaishuai Nie, Yafei Wang, Guigang Tu, Yingrui Ma, Kunyan Liu, Chen Chen

Summary: This study explores the feasibility of utilizing a multi-level horizontal branch well heat recovery system in the Qiabuqia geothermal field. The research systematically investigates the effects of various engineering parameters on production temperature, establishes mathematical models to describe their relationships, and evaluates the economic viability of the system. The findings demonstrate the significant economic feasibility of the multi-level branch well system.

ENERGY (2024)

Article Thermodynamics

Role of tip leakage flow in an ultra-highly loaded transonic rotor aerodynamics

Longxin Zhang, Songtao Wang, Site Hu

Summary: This investigation reveals the influence of tip leakage flow on the modern transonic rotor and finds that the increase of tip clearance size leads to a decline in rotor performance. However, an optimal tip clearance size can extend the rotor's stall margin.

ENERGY (2024)

Article Thermodynamics

Fifth-generation district heating and cooling: Opportunities and implementation challenges in a mild climate

Kristian Gjoka, Behzad Rismanchi, Robert H. Crawford

Summary: This paper proposes a framework for assessing the performance of 5GDHC systems and demonstrates it through a case study in a university campus in Melbourne, Australia. The results show that 5GDHC systems are a cost-effective and environmentally viable solution in mild climates, and their successful implementation in Australia can create new market opportunities and potential adoption in other countries with similar climatic conditions.

ENERGY (2024)

Article Thermodynamics

An orientation-adaptive electromagnetic energy harvester scavenging for wind-induced vibration

Jianwei Li, Guotai Wang, Panpan Yang, Yongshuang Wen, Leian Zhang, Rujun Song, Chengwei Hou

Summary: This study proposes an orientation-adaptive electromagnetic energy harvester by introducing a rotatable bluff body, which allows for self-regulation to cater for changing wind flow direction. Experimental results show that the output power of the energy harvester can be greatly enhanced with increased rotatory inertia of the rotating bluff body, providing a promising solution for harnessing wind-induced vibration energy.

ENERGY (2024)