4.7 Article

Mouse Slc4a11 expressed in Xenopus oocytes is an ideally selective H+/OH- conductance pathway that is stimulated by rises in intracellular and extracellular pH

期刊

AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY
卷 311, 期 6, 页码 C945-C959

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpcell.00259.2016

关键词

acid-base; cornea; fluid transport; NaBC1; proton

资金

  1. Dean of the School of Medicine and Biomedical Sciences at UB:SUNY
  2. Department of Physiology and Biophysics at UB:SUNY
  3. ASN Foundation for Kidney Research
  4. National Institutes of Health [EY021646]

向作者/读者索取更多资源

The SLC4A11 gene encodes the bicarbonate-transporter-related protein BTR1, which is mutated in syndromes characterized by vision and hearing loss. Signs of these diseases [congenital hereditary endothelial dystrophy (CHED) and Harboyan syndrome] are evident in mouse models of Slc4a11 disruption. However, the intrinsic activity of Slc4a11 remains controversial, complicating assignment of its (patho) physiological role. Most studies concur that Slc4a11 transports H+ (or the thermodynamically equivalent species OH-) rather than HCO3-, but disparities have arisen as to whether the transport is coupled to another species such as Na+ or NH3/NH4+. Here for the first time, we examine the action of mouse Slc4a11 in Xenopus oocytes. We simultaneously monitor changes in intracellular pH, membrane potential, and conductance as we alter extracellular pH, revealing the electrical and chemical driving forces that underlie the observed ion fluxes. We find that mSlc4a11 is an ideally selective H+/OH- conductive pathway, the action of which is uncoupled from the cotransport of any other ion. We also find that the activity of mSlc4a11 is independently enhanced by both extracellular and intracellular alkalinization, suggesting OH- as the most likely substrate and providing a novel explanation for the apparent NH3-dependence of Slc4a11-mediated currents reported by others. We suggest that the unique properties of Slc4a11 action underlie its value as a pH regulator in corneal endothelial cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据